Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Estrada index
Topological index of protein folding

In chemical graph theory, the Estrada index is a topological index of protein folding. The index was first defined by Ernesto Estrada as a measure of the degree of folding of a protein, which is represented as a path-graph weighted by the dihedral or torsional angles of the protein backbone. This index of degree of folding has found multiple applications in the study of protein functions and protein-ligand interactions.

The name "Estrada index" was introduced by de la Peña et al. in 2007.

We don't have any images related to Estrada index yet.
We don't have any YouTube videos related to Estrada index yet.
We don't have any PDF documents related to Estrada index yet.
We don't have any Books related to Estrada index yet.
We don't have any archived web articles related to Estrada index yet.

Derivation

Let G = ( V , E ) {\displaystyle G=(V,E)} be a graph of size | V | = n {\displaystyle |V|=n} and let λ 1 ≥ λ 2 ≥ ⋯ ≥ λ n {\displaystyle \lambda _{1}\geq \lambda _{2}\geq \cdots \geq \lambda _{n}} be a non-increasing ordering of the eigenvalues of its adjacency matrix A {\displaystyle A} . The Estrada index is defined as

EE ⁡ ( G ) = ∑ j = 1 n e λ j {\displaystyle \operatorname {EE} (G)=\sum _{j=1}^{n}e^{\lambda _{j}}}

For a general graph, the index can be obtained as the sum of the subgraph centralities of all nodes in the graph. The subgraph centrality of node i {\displaystyle i} is defined as3

EE ⁡ ( i ) = ∑ k = 0 ∞ ( A k ) i i k ! {\displaystyle \operatorname {EE} (i)=\sum _{k=0}^{\infty }{\frac {(A^{k})_{ii}}{k!}}}

The subgraph centrality has the following closed form4

EE ⁡ ( i ) = ( e A ) i i = ∑ j = 1 n [ φ j ( i ) ] 2 e λ j {\displaystyle \operatorname {EE} (i)=(e^{A})_{ii}=\sum _{j=1}^{n}[\varphi _{j}(i)]^{2}e^{\lambda _{j}}}

where φ j ( i ) {\displaystyle \varphi _{j}(i)} is the i {\displaystyle i} th entry of the j {\displaystyle j} th eigenvector associated with the eigenvalue λ j {\displaystyle \lambda _{j}} . It is straightforward to realise that5

EE ⁡ ( G ) = tr ⁡ ( e A ) {\displaystyle \operatorname {EE} (G)=\operatorname {tr} (e^{A})}

References

  1. Estrada, E. (2000). "Characterization of 3D molecular structure". Chem. Phys. Lett. 319 (319): 713. Bibcode:2000CPL...319..713E. doi:10.1016/S0009-2614(00)00158-5. /wiki/Bibcode_(identifier)

  2. de la Peña, J. A.; Gutman, I.; Rada, J. (2007). "Estimating the Estrada index". Linear Algebra Appl. 427: 70–76. doi:10.1016/j.laa.2007.06.020. https://doi.org/10.1016%2Fj.laa.2007.06.020

  3. Estrada, E.; Rodríguez-Velázquez, J.A. (2005). "Subgraph centrality in complex networks". Phys. Rev. E. 71 (5): 056103. arXiv:cond-mat/0504730. Bibcode:2005PhRvE..71e6103E. doi:10.1103/PhysRevE.71.056103. PMID 16089598. S2CID 4512786. /wiki/ArXiv_(identifier)

  4. Estrada, E.; Rodríguez-Velázquez, J.A. (2005). "Subgraph centrality in complex networks". Phys. Rev. E. 71 (5): 056103. arXiv:cond-mat/0504730. Bibcode:2005PhRvE..71e6103E. doi:10.1103/PhysRevE.71.056103. PMID 16089598. S2CID 4512786. /wiki/ArXiv_(identifier)

  5. Estrada, E.; Rodríguez-Velázquez, J.A. (2005). "Subgraph centrality in complex networks". Phys. Rev. E. 71 (5): 056103. arXiv:cond-mat/0504730. Bibcode:2005PhRvE..71e6103E. doi:10.1103/PhysRevE.71.056103. PMID 16089598. S2CID 4512786. /wiki/ArXiv_(identifier)