Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Elliptic hypergeometric series
Elliptic analog of hypergeometric series

In mathematics, an elliptic hypergeometric series is a series Σcn such that the ratio cn/cn−1 is an elliptic function of n, analogous to generalized hypergeometric series where the ratio is a rational function of n, and basic hypergeometric series where the ratio is a periodic function of the complex number n. They were introduced by Date-Jimbo-Kuniba-Miwa-Okado (1987) and Frenkel & Turaev (1997) in their study of elliptic 6-j symbols.

For surveys of elliptic hypergeometric series see Gasper & Rahman (2004), Spiridonov (2008) or Rosengren (2016).

We don't have any images related to Elliptic hypergeometric series yet.
We don't have any YouTube videos related to Elliptic hypergeometric series yet.
We don't have any PDF documents related to Elliptic hypergeometric series yet.
We don't have any Books related to Elliptic hypergeometric series yet.
We don't have any archived web articles related to Elliptic hypergeometric series yet.

Definitions

The q-Pochhammer symbol is defined by

( a ; q ) n = ∏ k = 0 n − 1 ( 1 − a q k ) = ( 1 − a ) ( 1 − a q ) ( 1 − a q 2 ) ⋯ ( 1 − a q n − 1 ) . {\displaystyle \displaystyle (a;q)_{n}=\prod _{k=0}^{n-1}(1-aq^{k})=(1-a)(1-aq)(1-aq^{2})\cdots (1-aq^{n-1}).} ( a 1 , a 2 , … , a m ; q ) n = ( a 1 ; q ) n ( a 2 ; q ) n … ( a m ; q ) n . {\displaystyle \displaystyle (a_{1},a_{2},\ldots ,a_{m};q)_{n}=(a_{1};q)_{n}(a_{2};q)_{n}\ldots (a_{m};q)_{n}.}

The modified Jacobi theta function with argument x and nome p is defined by

θ ( x ; p ) = ( x , p / x ; p ) ∞ {\displaystyle \displaystyle \theta (x;p)=(x,p/x;p)_{\infty }} θ ( x 1 , . . . , x m ; p ) = θ ( x 1 ; p ) . . . θ ( x m ; p ) {\displaystyle \displaystyle \theta (x_{1},...,x_{m};p)=\theta (x_{1};p)...\theta (x_{m};p)}

The elliptic shifted factorial is defined by

( a ; q , p ) n = θ ( a ; p ) θ ( a q ; p ) . . . θ ( a q n − 1 ; p ) {\displaystyle \displaystyle (a;q,p)_{n}=\theta (a;p)\theta (aq;p)...\theta (aq^{n-1};p)} ( a 1 , . . . , a m ; q , p ) n = ( a 1 ; q , p ) n ⋯ ( a m ; q , p ) n {\displaystyle \displaystyle (a_{1},...,a_{m};q,p)_{n}=(a_{1};q,p)_{n}\cdots (a_{m};q,p)_{n}}

The theta hypergeometric series r+1Er is defined by

r + 1 E r ( a 1 , . . . a r + 1 ; b 1 , . . . , b r ; q , p ; z ) = ∑ n = 0 ∞ ( a 1 , . . . , a r + 1 ; q ; p ) n ( q , b 1 , . . . , b r ; q , p ) n z n {\displaystyle \displaystyle {}_{r+1}E_{r}(a_{1},...a_{r+1};b_{1},...,b_{r};q,p;z)=\sum _{n=0}^{\infty }{\frac {(a_{1},...,a_{r+1};q;p)_{n}}{(q,b_{1},...,b_{r};q,p)_{n}}}z^{n}}

The very well poised theta hypergeometric series r+1Vr is defined by

r + 1 V r ( a 1 ; a 6 , a 7 , . . . a r + 1 ; q , p ; z ) = ∑ n = 0 ∞ θ ( a 1 q 2 n ; p ) θ ( a 1 ; p ) ( a 1 , a 6 , a 7 , . . . , a r + 1 ; q ; p ) n ( q , a 1 q / a 6 , a 1 q / a 7 , . . . , a 1 q / a r + 1 ; q , p ) n ( q z ) n {\displaystyle \displaystyle {}_{r+1}V_{r}(a_{1};a_{6},a_{7},...a_{r+1};q,p;z)=\sum _{n=0}^{\infty }{\frac {\theta (a_{1}q^{2n};p)}{\theta (a_{1};p)}}{\frac {(a_{1},a_{6},a_{7},...,a_{r+1};q;p)_{n}}{(q,a_{1}q/a_{6},a_{1}q/a_{7},...,a_{1}q/a_{r+1};q,p)_{n}}}(qz)^{n}}

The bilateral theta hypergeometric series rGr is defined by

r G r ( a 1 , . . . a r ; b 1 , . . . , b r ; q , p ; z ) = ∑ n = − ∞ ∞ ( a 1 , . . . , a r ; q ; p ) n ( b 1 , . . . , b r ; q , p ) n z n {\displaystyle \displaystyle {}_{r}G_{r}(a_{1},...a_{r};b_{1},...,b_{r};q,p;z)=\sum _{n=-\infty }^{\infty }{\frac {(a_{1},...,a_{r};q;p)_{n}}{(b_{1},...,b_{r};q,p)_{n}}}z^{n}}

Definitions of additive elliptic hypergeometric series

The elliptic numbers are defined by

[ a ; σ , τ ] = θ 1 ( π σ a , e π i τ ) θ 1 ( π σ , e π i τ ) {\displaystyle [a;\sigma ,\tau ]={\frac {\theta _{1}(\pi \sigma a,e^{\pi i\tau })}{\theta _{1}(\pi \sigma ,e^{\pi i\tau })}}}

where the Jacobi theta function is defined by

θ 1 ( x , q ) = ∑ n = − ∞ ∞ ( − 1 ) n q ( n + 1 / 2 ) 2 e ( 2 n + 1 ) i x {\displaystyle \theta _{1}(x,q)=\sum _{n=-\infty }^{\infty }(-1)^{n}q^{(n+1/2)^{2}}e^{(2n+1)ix}}

The additive elliptic shifted factorials are defined by

  • [ a ; σ , τ ] n = [ a ; σ , τ ] [ a + 1 ; σ , τ ] . . . [ a + n − 1 ; σ , τ ] {\displaystyle [a;\sigma ,\tau ]_{n}=[a;\sigma ,\tau ][a+1;\sigma ,\tau ]...[a+n-1;\sigma ,\tau ]}
  • [ a 1 , . . . , a m ; σ , τ ] = [ a 1 ; σ , τ ] . . . [ a m ; σ , τ ] {\displaystyle [a_{1},...,a_{m};\sigma ,\tau ]=[a_{1};\sigma ,\tau ]...[a_{m};\sigma ,\tau ]}

The additive theta hypergeometric series r+1er is defined by

r + 1 e r ( a 1 , . . . a r + 1 ; b 1 , . . . , b r ; σ , τ ; z ) = ∑ n = 0 ∞ [ a 1 , . . . , a r + 1 ; σ ; τ ] n [ 1 , b 1 , . . . , b r ; σ , τ ] n z n {\displaystyle \displaystyle {}_{r+1}e_{r}(a_{1},...a_{r+1};b_{1},...,b_{r};\sigma ,\tau ;z)=\sum _{n=0}^{\infty }{\frac {[a_{1},...,a_{r+1};\sigma ;\tau ]_{n}}{[1,b_{1},...,b_{r};\sigma ,\tau ]_{n}}}z^{n}}

The additive very well poised theta hypergeometric series r+1vr is defined by

r + 1 v r ( a 1 ; a 6 , . . . a r + 1 ; σ , τ ; z ) = ∑ n = 0 ∞ [ a 1 + 2 n ; σ , τ ] [ a 1 ; σ , τ ] [ a 1 , a 6 , . . . , a r + 1 ; σ , τ ] n [ 1 , 1 + a 1 − a 6 , . . . , 1 + a 1 − a r + 1 ; σ , τ ] n z n {\displaystyle \displaystyle {}_{r+1}v_{r}(a_{1};a_{6},...a_{r+1};\sigma ,\tau ;z)=\sum _{n=0}^{\infty }{\frac {[a_{1}+2n;\sigma ,\tau ]}{[a_{1};\sigma ,\tau ]}}{\frac {[a_{1},a_{6},...,a_{r+1};\sigma ,\tau ]_{n}}{[1,1+a_{1}-a_{6},...,1+a_{1}-a_{r+1};\sigma ,\tau ]_{n}}}z^{n}}

Further reading

  • Spiridonov, V. P. (2013). "Aspects of elliptic hypergeometric functions". In Berndt, Bruce C. (ed.). The Legacy of Srinivasa Ramanujan Proceedings of an International Conference in Celebration of the 125th Anniversary of Ramanujan's Birth; University of Delhi, 17-22 December 2012. Ramanujan Mathematical Society Lecture Notes Series. Vol. 20. Ramanujan Mathematical Society. pp. 347–361. arXiv:1307.2876. Bibcode:2013arXiv1307.2876S. ISBN 9789380416137.
  • Rosengren, Hjalmar (2016). "Elliptic Hypergeometric Functions". arXiv:1608.06161 [math.CA].