In air, samarium slowly oxidizes at room temperature and spontaneously ignites at 150 °C (302 °F). Even when stored under mineral oil, samarium gradually oxidizes and develops a grayish-yellow powder of the oxide-hydroxide mixture at the surface. The metallic appearance of a sample can be preserved by sealing it under an inert gas such as argon.
Samarium is quite electropositive and reacts slowly with cold water and rapidly with hot water to form samarium hydroxide:
2Sm(s) + 6H2O(l) → 2Sm(OH)3(aq) + 3H2(g)
Samarium is one of the few lanthanides with a relatively accessible +2 oxidation state, alongside Eu and Yb. Sm2+ ions are blood-red in aqueous solution.
Samarium is one of the few lanthanides that form a monoxide, SmO. This lustrous golden-yellow compound was obtained by reducing Sm2O3 with samarium metal at high temperature (1000 °C) and a pressure above 50 kbar; lowering the pressure resulted in incomplete reaction. SmO has cubic rock-salt lattice structure.
Their further reduction with samarium, lithium or sodium metals at elevated temperatures (about 700–900 °C) yields the dihalides. The diiodide can also be prepared by heating SmI3, or by reacting the metal with 1,2-diiodoethane in anhydrous tetrahydrofuran at room temperature:
Sm (s) + ICH2-CH2I → SmI2 + CH2=CH2.
Samarium halides change their crystal structures when one type of halide anion is substituted for another, which is an uncommon behavior for most elements (e.g. actinides). Many halides have two major crystal phases for one composition, one being significantly more stable and another being metastable. The latter is formed upon compression or heating, followed by quenching to ambient conditions. For example, compressing the usual monoclinic samarium diiodide and releasing the pressure results in a PbCl2-type orthorhombic structure (density 5.90 g/cm3), and similar treatment results in a new phase of samarium triiodide (density 5.97 g/cm3).
Samarium hexaboride is a typical intermediate-valence compound where samarium is present both as Sm2+ and Sm3+ ions in a 3:7 ratio. It belongs to a class of Kondo insulators; at temperatures above 50 K, its properties are typical of a Kondo metal, with metallic electrical conductivity characterized by strong electron scattering, whereas at lower temperatures, it behaves as a non-magnetic insulator with a narrow band gap of about 4–14 meV. The cooling-induced metal-insulator transition in SmB6 is accompanied by a sharp increase in the thermal conductivity, peaking at about 15 K. The reason for this increase is that electrons themselves do not contribute to the thermal conductivity at low temperatures, which is dominated by phonons, but the decrease in electron concentration reduces the rate of electron-phonon scattering.
Numerous crystalline binary compounds are known for samarium and one of the group 14, 15, or 16 elements X, where X is Si, Ge, Sn, Pb, Sb or Te, and metallic alloys of samarium form another large group. They are all prepared by annealing mixed powders of the corresponding elements. Many of the resulting compounds are non-stoichiometric and have nominal compositions SmaXb, where the b/a ratio varies between 0.5 and 3.
The (C5H5)− ion in samarium cyclopentadienides can be replaced by the indenide (C9H7)− or cyclooctatetraenide (C8H8)2− ring, resulting in Sm(C9H7)3 or KSm(η(8)−C8H8)2. The latter compound has a structure similar to uranocene. There is also a cyclopentadienide of divalent samarium, Sm(C5H5)2 a solid that sublimates at about 85 °C (185 °F). Contrary to ferrocene, the C5H5 rings in Sm(C5H5)2 are not parallel but are tilted by 40°.
Samarium-149 is an observationally stable isotope of samarium (predicted to decay, but no decays have ever been observed, giving it a half-life at least several orders of magnitude longer than the age of the universe), and a product of the decay chain from the fission product 149Nd (yield 1.0888%). 149Sm is a decay product and neutron-absorber in nuclear reactors, with a neutron poison effect that is second in importance for reactor design and operation only to 135Xe. Its neutron cross section is 41000 barns for thermal neutrons. Because samarium-149 is not radioactive and is not removed by decay, it presents problems somewhat different from those encountered with xenon-135. The equilibrium concentration (and thus the poisoning effect) builds to an equilibrium value during reactor operations in about 500 hours (about three weeks), and since samarium-149 is stable, its concentration remains essentially constant during reactor operation.
Samarium-153 is a beta emitter with a half-life of 46.3 hours. It is used to kill cancer cells in lung cancer, prostate cancer, breast cancer, and osteosarcoma. For this purpose, samarium-153 is chelated with ethylene diamine tetramethylene phosphonate (EDTMP) and injected intravenously. The chelation prevents accumulation of radioactive samarium in the body that would result in excessive irradiation and generation of new cancer cells. The corresponding drug has several names including samarium (153Sm) lexidronam; its trade name is Quadramet.
Detection of samarium and related elements was announced by several scientists in the second half of the 19th century; however, most sources give priority to French chemist Paul-Émile Lecoq de Boisbaudran. Boisbaudran isolated samarium oxide and/or hydroxide in Paris in 1879 from the mineral samarskite ((Y,Ce,U,Fe)3(Nb,Ta,Ti)5O16) and identified a new element in it via sharp optical absorption lines. Swiss chemist Marc Delafontaine announced a new element decipium (from Latin: decipiens meaning "deceptive, misleading") in 1878, but later in 1880–1881 demonstrated that it was a mix of several elements, one being identical to Boisbaudran's samarium. Though samarskite was first found in the Ural Mountains in Russia, by the late 1870s it had been found in other places, making it available to many researchers. In particular, it was found that the samarium isolated by Boisbaudran was also impure and had a comparable amount of europium. The pure samarium(III) oxide was produced only in 1901 by Eugène-Anatole Demarçay, and in 1903 Wilhelm Muthmann isolated the element.
Samarium concentration in soils varies between 2 and 23 ppm, and oceans contain about 0.5–0.8 parts per trillion. The median value for its abundance in the Earth's crust used by the CRC Handbook is 7 parts per million (ppm) and is the 40th most abundant element. Distribution of samarium in soils strongly depends on its chemical state and is very inhomogeneous: in sandy soils, samarium concentration is about 200 times higher at the surface of soil particles than in the water trapped between them, and this ratio can exceed 1,000 in clays.
Samarium is not found free in nature, but, like other rare earth elements, is contained in many minerals, including monazite, bastnäsite, cerite, gadolinite and samarskite; monazite (in which samarium occurs at concentrations of up to 2.8%) and bastnäsite are mostly used as commercial sources. World resources of samarium are estimated at two million tonnes; they are mostly located in China, US, Brazil, India, Sri Lanka and Australia, and the annual production is about 700 tonnes. Country production reports are usually given for all rare-earth metals combined. By far, China has the largest production with 120,000 tonnes mined per year; it is followed by the US (about 5,000 tonnes) and India (2,700 tonnes). Samarium is usually sold as oxide, which at the price of about US$30/kg is one of the cheapest lanthanide oxides. Whereas mischmetal – a mixture of rare earth metals containing about 1% of samarium – has long been used, relatively pure samarium has been isolated only recently, through ion exchange processes, solvent extraction techniques, and electrochemical deposition. The metal is often prepared by electrolysis of a molten mixture of samarium(III) chloride with sodium chloride or calcium chloride. Samarium can also be obtained by reducing its oxide with lanthanum. The product is then distilled to separate samarium (boiling point 1,794 °C) and lanthanum (b.p. 3,464 °C).
Very few minerals have samarium being the most dominant element. Minerals with essential (dominant) samarium include monazite-(Sm) and florencite-(Sm). These minerals are very rare and are usually found containing other elements, usually cerium or neodymium. It is also made by neutron capture by samarium-149, which is added to the control rods of nuclear reactors. Therefore, 151Sm is present in spent nuclear fuel and radioactive waste.
As of 2025, China produces all of the world's usable samarium. During US president Donald Trump's second-term tariff war, China leveled strict limits on the export of samarium, among other rare earth metals, as part of the long-running rare earths trade dispute (and larger trade war) between the two nations.
Due to their heat resistance, samarium magnets are also used for military applications and are needed to manufacture modern aircraft and missiles. A single F-35 fighter jet contains about 50 pounds (23 kg) of samarium magnets.
In its usual oxidized form, samarium is added to ceramics and glasses where it increases absorption of infrared light. As a (minor) part of mischmetal, samarium is found in the "flint" ignition devices of many lighters and torches.
In 2007 it was shown that nanocrystalline BaFCl:Sm3+ as prepared by co-precipitation can serve as a very efficient X-ray storage phosphor. The co-precipitation leads to nanocrystallites of the order of 100–200 nm in size and their sensitivity as X-ray storage phosphors is increased a remarkable ~500,000 times because of the specific arrangements and density of defect centers in comparison with microcrystalline samples prepared by sintering at high temperature. The mechanism is based on reduction of Sm3+ to Sm2+ by trapping electrons that are created upon exposure to ionizing radiation in the BaFCl host. The 5DJ–7FJ f–f luminescence lines can be very efficiently excited via the parity allowed 4f6→4f55d transition at ~417 nm. The latter wavelength is ideal for efficient excitation by blue-violet laser diodes as the transition is electric dipole allowed and thus relatively intense (400 L/(mol⋅cm)).
The phosphor has potential applications in personal dosimetry, dosimetry and imaging in radiotherapy, and medical imaging.
Samarium salts stimulate metabolism, but it is unclear whether this is from samarium or other lanthanides present with it. The total amount of samarium in adults is about 50 μg, mostly in liver and kidneys and with ~8 μg/L being dissolved in blood. Samarium is not absorbed by plants to a measurable concentration and so is normally not part of human diet. However, a few plants and vegetables may contain up to 1 part per million of samarium. Insoluble salts of samarium are non-toxic and the soluble ones are only slightly toxic. When ingested, only 0.05% of samarium salts are absorbed into the bloodstream and the remainder are excreted. From the blood, 45% goes to the liver and 45% is deposited on the surface of the bones where it remains for 10 years; the remaining 10% is excreted.
Emsley, John (2001). "Samarium". Nature's Building Blocks: An A–Z Guide to the Elements. Oxford, England, UK: Oxford University Press. pp. 371–374. ISBN 0-19-850340-7. 0-19-850340-7
J.A. Dean, ed. (1999). Lange's Handbook of Chemistry (15th ed.). New York, NY: McGraw-Hill. Section 3; Table 3.2 Physical Constants of Inorganic Compounds. ISBN 978-0-07016384-3. 978-0-07016384-3
Hammond, C. R. (2004-06-29). "The Elements". Handbook of Chemistry and Physics (81st ed.). Boca Raton New York Washington: CRC press. pp. 4–27. ISBN 978-0-8493-0481-1. 978-0-8493-0481-1
Clementi, E.; Raimond, D. L.; Reinhardt, W. P. (1967). "Atomic Screening Constants from SCF Functions. II. Atoms with 37 to 86 Electrons". Journal of Chemical Physics. 47 (4): 1300–1307. Bibcode:1967JChPh..47.1300C. doi:10.1063/1.1712084. /wiki/Journal_of_Chemical_Physics
Shi, N.; Fort, D. (1985). "Preparation of samarium in the double hexagonal close packed form". Journal of the Less Common Metals. 113 (2): 21. doi:10.1016/0022-5088(85)90294-2. /wiki/Doi_(identifier)
Shi, N.; Fort, D. (1985). "Preparation of samarium in the double hexagonal close packed form". Journal of the Less Common Metals. 113 (2): 21. doi:10.1016/0022-5088(85)90294-2. /wiki/Doi_(identifier)
Lock, J. M. (1957). "The Magnetic Susceptibilities of Lanthanum, Cerium, Praseodymium, Neodymium and Samarium, from 1.5 K to 300 K". Proceedings of the Physical Society. Series B. 70 (6): 566. Bibcode:1957PPSB...70..566L. doi:10.1088/0370-1301/70/6/304. /wiki/Bibcode_(identifier)
Huray, P.; Nave, S.; Haire, R. (1983). "Magnetism of the heavy 5f elements". Journal of the Less Common Metals. 93 (2): 293. doi:10.1016/0022-5088(83)90175-3. /wiki/Doi_(identifier)
Okazaki, T.; Suenaga, Kazutomo; Hirahara, Kaori; et al. (2002). "Electronic and geometric structures of metallofullerene peapods". Physica B. 323 (1–4): 97. Bibcode:2002PhyB..323...97O. doi:10.1016/S0921-4526(02)00991-2. /wiki/Bibcode_(identifier)
Chen, X.; Roth, G. (1995). "Superconductivity at 8 K in samarium-doped C60". Physical Review B. 52 (21): 15534–15536. Bibcode:1995PhRvB..5215534C. doi:10.1103/PhysRevB.52.15534. PMID 9980911. /wiki/Bibcode_(identifier)
Wu, G.; Xie, Y. L.; Chen, H.; et al. (2008). "Superconductivity at 56 K in Samarium-doped SrFeAsF". Journal of Physics: Condensed Matter. 21 (14): 142203. arXiv:0811.0761. Bibcode:2009JPCM...21n2203W. doi:10.1088/0953-8984/21/14/142203. PMID 21825317. S2CID 41728130. /wiki/ArXiv_(identifier)
Emsley, John (2001). "Samarium". Nature's Building Blocks: An A–Z Guide to the Elements. Oxford, England, UK: Oxford University Press. pp. 371–374. ISBN 0-19-850340-7. 0-19-850340-7
Hammond, C. R. (2004-06-29). "The Elements". Handbook of Chemistry and Physics (81st ed.). Boca Raton New York Washington: CRC press. pp. 4–27. ISBN 978-0-8493-0481-1. 978-0-8493-0481-1
"Chemical reactions of Samarium". Webelements. Retrieved 2009-06-06. https://www.webelements.com/samarium/chemistry.html
Greenwood, p. 1243 - Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth–Heinemann. ISBN 9780080379418.
"Chemical reactions of Samarium". Webelements. Retrieved 2009-06-06. https://www.webelements.com/samarium/chemistry.html
Stephen T. Liddle; David P. Mills; Louise S. Natrajan, eds. (2022). The lanthanides and actinides: synthesis, reactivity, properties and applications. London. p. 213. ISBN 978-1-80061-015-6. OCLC 1251740566.{{cite book}}: CS1 maint: location missing publisher (link) 978-1-80061-015-6
Greenwood, p. 1248 - Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth–Heinemann. ISBN 9780080379418.
Shi, N.; Fort, D. (1985). "Preparation of samarium in the double hexagonal close packed form". Journal of the Less Common Metals. 113 (2): 21. doi:10.1016/0022-5088(85)90294-2. /wiki/Doi_(identifier)
Shi, N.; Fort, D. (1985). "Preparation of samarium in the double hexagonal close packed form". Journal of the Less Common Metals. 113 (2): 21. doi:10.1016/0022-5088(85)90294-2. /wiki/Doi_(identifier)
Vohra, Y.; Akella, Jagannadham; Weir, Sam; Smith, Gordon S. (1991). "A new ultra-high pressure phase in samarium". Physics Letters A. 158 (1–2): 89. Bibcode:1991PhLA..158...89V. doi:10.1016/0375-9601(91)90346-A. https://zenodo.org/record/1258493
Leger, J.; Yacoubi, N.; Loriers, J. (1981). "Synthesis of rare earth monoxides". Journal of Solid State Chemistry. 36 (3): 261. Bibcode:1981JSSCh..36..261L. doi:10.1016/0022-4596(81)90436-9. /wiki/Bibcode_(identifier)
Gouteron, J.; Michel, D.; Lejus, A. M.; Zarembowitch, J. (1981). "Raman spectra of lanthanide sesquioxide single crystals: Correlation between A and B-type structures". Journal of Solid State Chemistry. 38 (3): 288. Bibcode:1981JSSCh..38..288G. doi:10.1016/0022-4596(81)90058-X. /wiki/Bibcode_(identifier)
Gouteron, J.; Michel, D.; Lejus, A. M.; Zarembowitch, J. (1981). "Raman spectra of lanthanide sesquioxide single crystals: Correlation between A and B-type structures". Journal of Solid State Chemistry. 38 (3): 288. Bibcode:1981JSSCh..38..288G. doi:10.1016/0022-4596(81)90058-X. /wiki/Bibcode_(identifier)
Taylor, D. (1984). "Thermal Expansion Data: III Sesquioxides, M2O3, with the corundum and the A-, B- and C-M2O3 structures". British Ceramic Transactions and Journal. 83 (4): 92–98.
Daou, J.; Vajda, P.; Burger, J. (1989). "Low temperature thermal expansion in SmH2+x". Solid State Communications. 71 (12): 1145. Bibcode:1989SSCom..71.1145D. doi:10.1016/0038-1098(89)90728-X. /wiki/Bibcode_(identifier)
Dolukhanyan, S. (1997). "Synthesis of novel compounds by hydrogen combustion". Journal of Alloys and Compounds. 253–254: 10. doi:10.1016/S0925-8388(96)03071-X. /wiki/Doi_(identifier)
Zavalii, L. V.; Kuz'ma, Yu. B.; Mikhalenko, S. I. (1990). "Sm2B5 boride and its structure". Soviet Powder Metallurgy and Metal Ceramics. 29 (6): 471. doi:10.1007/BF00795346. S2CID 138416728. /wiki/Doi_(identifier)
Cannon, J.; Cannon, D.; Tracyhall, H. (1977). "High pressure syntheses of SmB2 and GdB12". Journal of the Less Common Metals. 56: 83. doi:10.1016/0022-5088(77)90221-1. /wiki/Doi_(identifier)
Etourneau, J.; Mercurio, J.; Berrada, A.; Hagenmuller, P.; Georges, R.; Bourezg, R.; Gianduzzo, J. (1979). "The magnetic and electrical properties of some rare earth tetraborides". Journal of the Less Common Metals. 67 (2): 531. doi:10.1016/0022-5088(79)90038-9. /wiki/Doi_(identifier)
Solovyev, G. I.; Spear, K. E. (1972). "Phase Behavior in the Sm-B System". Journal of the American Ceramic Society. 55 (9): 475. doi:10.1111/j.1151-2916.1972.tb11344.x. /wiki/Doi_(identifier)
Schwetz, K.; Ettmayer, P.; Kieffer, R.; Lipp, A. (1972). "Über die Hektoboridphasen der Lanthaniden und Aktiniden". Journal of the Less Common Metals. 26: 99. doi:10.1016/0022-5088(72)90012-4. /wiki/Doi_(identifier)
Spedding, F. H.; Gschneidner, K.; Daane, A. H. (1958). "The Crystal Structures of Some of the Rare Earth Carbides". Journal of the American Chemical Society. 80 (17): 4499. Bibcode:1958JAChS..80.4499S. doi:10.1021/ja01550a017. /wiki/Bibcode_(identifier)
Spedding, F. H.; Gschneidner, K.; Daane, A. H. (1958). "The Crystal Structures of Some of the Rare Earth Carbides". Journal of the American Chemical Society. 80 (17): 4499. Bibcode:1958JAChS..80.4499S. doi:10.1021/ja01550a017. /wiki/Bibcode_(identifier)
Greenwood, p. 1241 - Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth–Heinemann. ISBN 9780080379418.
Greis, O. (1978). "Über neue Verbindungen im system SmF2_SmF3". Journal of Solid State Chemistry. 24 (2): 227. Bibcode:1978JSSCh..24..227G. doi:10.1016/0022-4596(78)90013-0. /wiki/Bibcode_(identifier)
Greenwood, p. 1241 - Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth–Heinemann. ISBN 9780080379418.
Greis, O. (1978). "Über neue Verbindungen im system SmF2_SmF3". Journal of Solid State Chemistry. 24 (2): 227. Bibcode:1978JSSCh..24..227G. doi:10.1016/0022-4596(78)90013-0. /wiki/Bibcode_(identifier)
Greenwood, p. 1241 - Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth–Heinemann. ISBN 9780080379418.
Meyer, G.; Schleid, T. (1986). "The metallothermic reduction of several rare-earth trichlorides with lithium and sodium". Journal of the Less Common Metals. 116: 187. doi:10.1016/0022-5088(86)90228-6. /wiki/Doi_(identifier)
Greenwood, p. 1241 - Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth–Heinemann. ISBN 9780080379418.
Greis, O. (1978). "Über neue Verbindungen im system SmF2_SmF3". Journal of Solid State Chemistry. 24 (2): 227. Bibcode:1978JSSCh..24..227G. doi:10.1016/0022-4596(78)90013-0. /wiki/Bibcode_(identifier)
Greenwood, p. 1241 - Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth–Heinemann. ISBN 9780080379418.
Bärnighausen, H. (1973). "Revue für anorganic Chemie". Revue de chimie minérale. 10: 77–92.
Greenwood, p. 1241 - Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth–Heinemann. ISBN 9780080379418.
Zachariasen, W. H. (1948). "Crystal chemical studies of the 5f-series of elements. I. New structure types". Acta Crystallographica. 1 (5): 265. Bibcode:1948AcCry...1..265Z. doi:10.1107/S0365110X48000703. /wiki/Bibcode_(identifier)
Greenwood, p. 1241 - Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth–Heinemann. ISBN 9780080379418.
Greenwood, p. 1241 - Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth–Heinemann. ISBN 9780080379418.
Asprey, L. B.; Keenan, T. K.; Kruse, F. H. (1964). "Preparation and Crystal Data for Lanthanide and Actinide Triiodides" (PDF). Inorganic Chemistry. 3 (8): 1137. doi:10.1021/ic50018a015. https://digital.library.unt.edu/ark:/67531/metadc867868/m2/1/high_res_d/4067674.pdf
Brown, R.; Clark, N. J. (1974). "Composition limits and vaporization behaviour of rare earth nitrides". Journal of Inorganic and Nuclear Chemistry. 36 (11): 2507. doi:10.1016/0022-1902(74)80462-8. /wiki/Doi_(identifier)
Meng, J.; Ren, Yufang (1991). "Studies on the electrical properties of rare earth monophosphides". Journal of Solid State Chemistry. 95 (2): 346. Bibcode:1991JSSCh..95..346M. doi:10.1016/0022-4596(91)90115-X. /wiki/Bibcode_(identifier)
Beeken, R.; Schweitzer, J. (1981). "Intermediate valence in alloys of SmSe with SmAs". Physical Review B. 23 (8): 3620. Bibcode:1981PhRvB..23.3620B. doi:10.1103/PhysRevB.23.3620. /wiki/Bibcode_(identifier)
Gouteron, J.; Michel, D.; Lejus, A. M.; Zarembowitch, J. (1981). "Raman spectra of lanthanide sesquioxide single crystals: Correlation between A and B-type structures". Journal of Solid State Chemistry. 38 (3): 288. Bibcode:1981JSSCh..38..288G. doi:10.1016/0022-4596(81)90058-X. /wiki/Bibcode_(identifier)
Taylor, D. (1984). "Thermal Expansion Data: III Sesquioxides, M2O3, with the corundum and the A-, B- and C-M2O3 structures". British Ceramic Transactions and Journal. 83 (4): 92–98.
Leger, J.; Yacoubi, N.; Loriers, J. (1981). "Synthesis of rare earth monoxides". Journal of Solid State Chemistry. 36 (3): 261. Bibcode:1981JSSCh..36..261L. doi:10.1016/0022-4596(81)90436-9. /wiki/Bibcode_(identifier)
Greenwood, p. 1239 - Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth–Heinemann. ISBN 9780080379418.
Bakar, Abu; Afaq, A.; Khan, M. Faizan; ul Aarifeen, Najm; Imran Jamil, M.; Asif, Muhammad (2020-01-01). "Insight into the structural, vibrational and thermodynamic properties of SmX (X = S, Se, Te) chalcogenides: First-principles investigations". Physica B: Condensed Matter. 576: 411715. doi:10.1016/j.physb.2019.411715. ISSN 0921-4526. S2CID 204206623. https://www.sciencedirect.com/science/article/pii/S0921452619306209
Beaurepaire, E. (2006). Magnetism: a synchrotron radiation approach. Berlin: Springer. ISBN 978-3-540-33242-8. OCLC 262692720. 978-3-540-33242-8
Emsley, John (2001). "Samarium". Nature's Building Blocks: An A–Z Guide to the Elements. Oxford, England, UK: Oxford University Press. pp. 371–374. ISBN 0-19-850340-7. 0-19-850340-7
Jayaraman, A.; Narayanamurti, V.; Bucher, E.; Maines, R. (1970). "Continuous and Discontinuous Semiconductor-Metal Transition in Samarium Monochalcogenides Under Pressure". Physical Review Letters. 25 (20): 1430. Bibcode:1970PhRvL..25.1430J. doi:10.1103/PhysRevLett.25.1430. /wiki/Bibcode_(identifier)
Greenwood, pp. 1236, 1241 - Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth–Heinemann. ISBN 9780080379418.
Meyer, G.; Schleid, T. (1986). "The metallothermic reduction of several rare-earth trichlorides with lithium and sodium". Journal of the Less Common Metals. 116: 187. doi:10.1016/0022-5088(86)90228-6. /wiki/Doi_(identifier)
Greenwood, p. 1240 - Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth–Heinemann. ISBN 9780080379418.
Greis, O. (1978). "Über neue Verbindungen im system SmF2_SmF3". Journal of Solid State Chemistry. 24 (2): 227. Bibcode:1978JSSCh..24..227G. doi:10.1016/0022-4596(78)90013-0. /wiki/Bibcode_(identifier)
Baernighausen, H.; Haschke, John M. (1978). "Compositions and crystal structures of the intermediate phases in the samarium-bromine system". Inorganic Chemistry. 17: 18. doi:10.1021/ic50179a005. /wiki/Doi_(identifier)
Beck, H. P. (1979). "Hochdruckmodifikationen der Diiodide von Sr., Sm und Eu. Eine neue PbCl2-Variante?". Zeitschrift für anorganische und allgemeine Chemie. 459: 81. doi:10.1002/zaac.19794590108. /wiki/Doi_(identifier)
Beck, H. P.; Gladrow, E. (1979). "Zur Hochdruckpolymorphie der Seltenerd-Trihalogenide". Zeitschrift für anorganische und allgemeine Chemie. 453: 79. doi:10.1002/zaac.19794530610. /wiki/Doi_(identifier)
Nickerson, J.; White, R.; Lee, K.; Bachmann, R.; Geballe, T.; Hull, G. (1971). "Physical Properties of SmB6". Physical Review B. 3 (6): 2030. Bibcode:1971PhRvB...3.2030N. doi:10.1103/PhysRevB.3.2030. /wiki/Bibcode_(identifier)
Solovyev, G. I.; Spear, K. E. (1972). "Phase Behavior in the Sm-B System". Journal of the American Ceramic Society. 55 (9): 475. doi:10.1111/j.1151-2916.1972.tb11344.x. /wiki/Doi_(identifier)
Cannon, J.; Cannon, D.; Tracyhall, H. (1977). "High pressure syntheses of SmB2 and GdB12". Journal of the Less Common Metals. 56: 83. doi:10.1016/0022-5088(77)90221-1. /wiki/Doi_(identifier)
Nickerson, J.; White, R.; Lee, K.; Bachmann, R.; Geballe, T.; Hull, G. (1971). "Physical Properties of SmB6". Physical Review B. 3 (6): 2030. Bibcode:1971PhRvB...3.2030N. doi:10.1103/PhysRevB.3.2030. /wiki/Bibcode_(identifier)
Nyhus, P.; Cooper, S.; Fisk, Z.; Sarrao, J. (1995). "Light scattering from gap excitations and bound states in SmB6". Physical Review B. 52 (20): 14308–14311. Bibcode:1995PhRvB..5214308N. doi:10.1103/PhysRevB.52.R14308. PMID 9980746. /wiki/John_Sarrao
Sera, M.; Kobayashi, S.; Hiroi, M.; Kobayashi, N.; Kunii, S. (1996). "Thermal conductivity of RB6 (R=Ce, Pr, Nd, Sm, Gd) single crystals". Physical Review B. 54 (8): R5207 – R5210. Bibcode:1996PhRvB..54.5207S. doi:10.1103/PhysRevB.54.R5207. PMID 9986570. /wiki/Bibcode_(identifier)
Spedding, F. H.; Gschneidner, K.; Daane, A. H. (1958). "The Crystal Structures of Some of the Rare Earth Carbides". Journal of the American Chemical Society. 80 (17): 4499. Bibcode:1958JAChS..80.4499S. doi:10.1021/ja01550a017. /wiki/Bibcode_(identifier)
Meng, J.; Ren, Yufang (1991). "Studies on the electrical properties of rare earth monophosphides". Journal of Solid State Chemistry. 95 (2): 346. Bibcode:1991JSSCh..95..346M. doi:10.1016/0022-4596(91)90115-X. /wiki/Bibcode_(identifier)
Beeken, R.; Schweitzer, J. (1981). "Intermediate valence in alloys of SmSe with SmAs". Physical Review B. 23 (8): 3620. Bibcode:1981PhRvB..23.3620B. doi:10.1103/PhysRevB.23.3620. /wiki/Bibcode_(identifier)
Gladyshevskii, E. I.; Kripyakevich, P. I. (1965). "Monosilicides of rare earth metals and their crystal structures". Journal of Structural Chemistry. 5 (6): 789. Bibcode:1965JStCh...5..789G. doi:10.1007/BF00744231. S2CID 93941853. /wiki/Bibcode_(identifier)
Smith, G. S.; Tharp, A. G.; Johnson, W. (1967). "Rare earth–germanium and –silicon compounds at 5:4 and 5:3 compositions". Acta Crystallographica. 22 (6): 940. Bibcode:1967AcCry..22..940S. doi:10.1107/S0365110X67001902. https://doi.org/10.1107%2FS0365110X67001902
Greenwood, p. 1248 - Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth–Heinemann. ISBN 9780080379418.
Greenwood, p. 1249 - Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth–Heinemann. ISBN 9780080379418.
Greenwood, p. 1249 - Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth–Heinemann. ISBN 9780080379418.
Evans, William J.; Hughes, Laura A.; Hanusa, Timothy P. (1986). "Synthesis and x-ray crystal structure of bis(pentamethylcyclopentadienyl) complexes of samarium and europium: (C5Me5)2Sm and (C5Me5)2Eu". Organometallics. 5 (7): 1285. doi:10.1021/om00138a001. /wiki/Doi_(identifier)
Greenwood, p. 1249 - Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth–Heinemann. ISBN 9780080379418.
Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf
Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf
"Chart of the nuclides". Brookhaven National Laboratory. Archived from the original on 2017-07-29. Retrieved 2011-02-13. https://web.archive.org/web/20170729181515/http://www.nndc.bnl.gov/chart/reCenter.jsp?z=62&n=87
Holden, Norman E. "Table of the isotopes" in Lide, D. R., ed. (2005). CRC Handbook of Chemistry and Physics (86th ed.). Boca Raton, Florida: CRC Press. ISBN 0-8493-0486-5. 0-8493-0486-5
Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf
Belli, P.; Bernabei, R.; Danevich, F. A.; Incicchitti, A.; Tretyak, V. I. (2019). "Experimental searches for rare alpha and beta decays". European Physical Journal A. 55 (140): 4–6. arXiv:1908.11458. Bibcode:2019EPJA...55..140B. doi:10.1140/epja/i2019-12823-2. S2CID 201664098. /wiki/European_Physical_Journal_A
Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf
Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf
Kiss, G. G.; Vitéz-Sveiczer, A.; Saito, Y.; et al. (2022). "Measuring the β-decay properties of neutron-rich exotic Pm, Sm, Eu, and Gd isotopes to constrain the nucleosynthesis yields in the rare-earth region". The Astrophysical Journal. 936 (107): 107. Bibcode:2022ApJ...936..107K. doi:10.3847/1538-4357/ac80fc. hdl:2117/375253. S2CID 252108123. https://doi.org/10.3847%2F1538-4357%2Fac80fc
Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf
Radiation Protection and NORM Residue Management in the Production of Rare Earths from Thorium Containing Minerals (PDF) (Report). Safety Report Series. International Atomic Energy Agency. 2011. p. 174. Retrieved 2022-07-25. https://www-pub.iaea.org/MTCD/Publications/PDF/Pub1512_web.pdf
Depaolo, D. J.; Wasserburg, G. J. (1976). "Nd isotopic variations and petrogenetic models" (PDF). Geophysical Research Letters. 3 (5): 249. Bibcode:1976GeoRL...3..249D. doi:10.1029/GL003i005p00249. https://authors.library.caltech.edu/41937/1/grl330.pdf
McCulloch, M. T.; Wasserburg, G. J. (1978). "Sm-Nd and Rb-Sr Chronology of Continental Crust Formation". Science. 200 (4345): 1003–11. Bibcode:1978Sci...200.1003M. doi:10.1126/science.200.4345.1003. PMID 17740673. S2CID 40675318. https://resolver.caltech.edu/CaltechAUTHORS:20131107-143832294
Chiera, Nadine M.; Sprung, Peter; Amelin, Yuri; Dressler, Rugard; Schumann, Dorothea; Talip, Zeynep (1 August 2024). "The 146Sm half-life re-measured: consolidating the chronometer for events in the early Solar System". Scientific Reports. 14 (1). doi:10.1038/s41598-024-64104-6. PMC 11294585. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11294585
Macfarlane, Ronald D. (1960). "Natural Occurrence of Samarium-146". Nature. 188 (4757): 1180–1181. Bibcode:1960Natur.188.1180M. doi:10.1038/1881180a0. ISSN 0028-0836. S2CID 4217617. /wiki/Bibcode_(identifier)
Samir Maji; et al. (2006). "Separation of samarium and neodymium: a prerequisite for getting signals from nuclear synthesis". Analyst. 131 (12): 1332–1334. Bibcode:2006Ana...131.1332M. doi:10.1039/b608157f. PMID 17124541. /wiki/Bibcode_(identifier)
DOE Fundamentals Handbook: Nuclear Physics and Reactor Theory (PDF). U.S. Department of Energy. January 1993. pp. 34, 67. Archived from the original (PDF) on 2009-03-22. https://web.archive.org/web/20090322040810/http://www.hss.energy.gov/nuclearsafety/ns/techstds/standard/hdbk1019/h1019v2.pdf
K., Khattab (2005). "Comparison of xenon-135 and samarium-149 poisoning in the Miniature Neutron Source Reactor" (in Arabic). https://inis.iaea.org/search/search.aspx?orig_q=RN:36069288
Espinosa, Carlos E.; Bodmann, Bardo E.J. Modeling and simulation of nuclear fuel in scenarios with long time scales. 19. ENFIR: meeting on nuclear reactor physics and thermal hydraulics. https://inis.iaea.org/search/search.aspx?orig_q=RN:46133777
DOE Handbook, pp. 43–47.
Emsley, John (2001). "Samarium". Nature's Building Blocks: An A–Z Guide to the Elements. Oxford, England, UK: Oxford University Press. pp. 371–374. ISBN 0-19-850340-7. 0-19-850340-7
"Centerwatch About drug Quadramet". Archived from the original on 2008-10-09. Retrieved 2009-06-06. https://web.archive.org/web/20081009094258/http://www.centerwatch.com/patient/drugs/dru267.html
Pattison, John E. (1999). "Finger doses received during 153Sm injections". Health Physics. 77 (5): 530–5. Bibcode:1999HeaPh..77..530P. doi:10.1097/00004032-199911000-00006. PMID 10524506. /wiki/Bibcode_(identifier)
Finlay, I. G.; Mason, M. D.; Shelley, M. (2005). "Radioisotopes for the palliation of metastatic bone cancer: a systematic review". The Lancet Oncology. 6 (6): 392–400. doi:10.1016/S1470-2045(05)70206-0. PMID 15925817. /wiki/Doi_(identifier)
Greenwood, p. 1229 - Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth–Heinemann. ISBN 9780080379418.
Samarium, Encyclopædia Britannica on-line http://www.britannica.com/EBchecked/topic/520309/samarium
Hammond, C. R. (2004-06-29). "The Elements". Handbook of Chemistry and Physics (81st ed.). Boca Raton New York Washington: CRC press. pp. 4–27. ISBN 978-0-8493-0481-1. 978-0-8493-0481-1
Delafontaine, Marc (1878). "Sur le décepium, métal nouveau de la samarskite". Journal de pharmacie et de chimie (in French). 28: 540. https://gallica.bnf.fr/ark:/12148/bpt6k78100m.image.r=Decipium.f548.langEN
Delafontaine, Marc (1878). "Sur le décepium, métal nouveau de la samarskite". Comptes rendus hebdomadaires des séances de l'Académie des Sciences (in French). 87: 632. https://gallica.bnf.fr/ark:/12148/bpt6k3044x.image.r=Decipium.f694.langEN
de Laeter, John Robert; Böhlke, John Karl; De Bièvre, Paul; Hidaka, Hiroshi; Peiser, H. Steffen; Rosman, Kevin J. R.; Taylor, Philip D. P. (2003). "Atomic weights of the elements. Review 2000 (IUPAC Technical Report)". Pure and Applied Chemistry. 75 (6): 683–800. doi:10.1351/pac200375060683. /wiki/John_Robert_de_Laeter
Delafontaine, Marc (1881). "Sur le décipium et le samarium". Comptes rendus hebdomadaires des séances de l'Académie des Sciences (in French). 93: 63. https://gallica.bnf.fr/ark:/12148/bpt6k3049g.image.r=Decipium.f63.langEN
Samarium: History & Etymology. Elements.vanderkrogt.net. Retrieved on 2013-03-21. https://elements.vanderkrogt.net/element.php?sym=Sm
Weeks, Mary Elvira (1956). The discovery of the elements (6th ed.). Easton, PA: Journal of Chemical Education. https://archive.org/details/discoveryoftheel002045mbp
Weeks, Mary Elvira (1932). "The discovery of the elements. XIII. Some elements predicted by Mendeleeff". Journal of Chemical Education. 9 (9): 1605–1619. Bibcode:1932JChEd...9.1605W. doi:10.1021/ed009p1605. /wiki/Mary_Elvira_Weeks
Samarskite, Great Soviet Encyclopedia (in Russian) https://bse.sci-lib.com/article099149.html
Boisbaudran, Lecoq de (1879). "Recherches sur le samarium, radical d'une terre nouvelle extraite de la samarskite". Comptes rendus hebdomadaires des séances de l'Académie des sciences. 89: 212–214. https://gallica.bnf.fr/ark:/12148/bpt6k3046j/f214.pagination
Shipley, Joseph Twadell. The Origins of English Words: A Discursive Dictionary of Indo-European Roots, JHU Press, 2001, p.90. ISBN 0-8018-6784-3 https://books.google.com/books?id=m1UKpE4YEkEC&pg=PA90
Samarium: History & Etymology. Elements.vanderkrogt.net. Retrieved on 2013-03-21. https://elements.vanderkrogt.net/element.php?sym=Sm
"Chemistry in Its Element - Samarium". Archived from the original on 4 March 2016. https://web.archive.org/web/20160304045647/http://www.rsc.org/chemistryworld/podcast/Interactive_Periodic_Table_Transcripts/Samarium.asp
Samarium: History & Etymology. Elements.vanderkrogt.net. Retrieved on 2013-03-21. https://elements.vanderkrogt.net/element.php?sym=Sm
Coplen, T. B.; Peiser, H. S. (1998). "History of the recommended atomic-weight values from 1882 to 1997: A comparison of differences from current values to the estimated uncertainties of earlier values (Technical Report)". Pure and Applied Chemistry. 70: 237. doi:10.1351/pac199870010237. S2CID 96729044. https://zenodo.org/record/1236255
Ghaemi, Arezoo; Tavakkoli, Haman; Rajabi, Negar (2015-06-01). "Solvent influence upon complex formation between 4,13-didecyl-1,7,10,16-tetraoxa-4,13-diazacyclooctadecane with samarium(III) metal cation in binary mixed non-aqueous solvents". Russian Journal of Applied Chemistry. 88 (6): 977–984. doi:10.1134/S1070427215060130. ISSN 1608-3296. S2CID 97051960. /wiki/Doi_(identifier)
"Chemistry in Its Element - Samarium". Archived from the original on 4 March 2016. https://web.archive.org/web/20160304045647/http://www.rsc.org/chemistryworld/podcast/Interactive_Periodic_Table_Transcripts/Samarium.asp
What are their prices?, Lynas corp. https://web.archive.org/web/20121014122537/http://lynascorp.com/page.asp?category_id=1&page_id=25
Emsley, John (2001). "Samarium". Nature's Building Blocks: An A–Z Guide to the Elements. Oxford, England, UK: Oxford University Press. pp. 371–374. ISBN 0-19-850340-7. 0-19-850340-7
ABUNDANCE OF ELEMENTS IN THE EARTH’S CRUST AND IN THE SEA, CRC Handbook of Chemistry and Physics, 97th edition (2016–2017), p. 14-17
Emsley, John (2011-08-25). Nature's Building Blocks: An A-Z Guide to the Elements. OUP Oxford. ISBN 978-0-19-960563-7. 978-0-19-960563-7
Human Health Fact Sheet on Samarium Archived 2012-04-07 at the Wayback Machine, Los Alamos National Laboratory http://www.ead.anl.gov/pub/doc/samarium.pdf
Hammond, C. R. (2004-06-29). "The Elements". Handbook of Chemistry and Physics (81st ed.). Boca Raton New York Washington: CRC press. pp. 4–27. ISBN 978-0-8493-0481-1. 978-0-8493-0481-1
Emsley, John (2001). "Samarium". Nature's Building Blocks: An A–Z Guide to the Elements. Oxford, England, UK: Oxford University Press. pp. 371–374. ISBN 0-19-850340-7. 0-19-850340-7
Human Health Fact Sheet on Samarium Archived 2012-04-07 at the Wayback Machine, Los Alamos National Laboratory http://www.ead.anl.gov/pub/doc/samarium.pdf
"Rare Earths" (PDF). United States Geological Survey. January 2010. Retrieved 2010-12-10. https://minerals.usgs.gov/minerals/pubs/commodity/rare_earths/mcs-2010-raree.pdf
What are their prices?, Lynas corp. https://web.archive.org/web/20121014122537/http://lynascorp.com/page.asp?category_id=1&page_id=25
Samarium, Encyclopædia Britannica on-line http://www.britannica.com/EBchecked/topic/520309/samarium
Masau, M.; Cerny, P.; Cooper, M. A.; Chapman, R.; Grice, J. D. (2002-12-01). "MONAZITE-(Sm), A NEW MEMBER OF THE MONAZITE GROUP FROM THE ANNIE CLAIM #3 GRANITIC PEGMATITE, SOUTHEASTERN MANITOBA". The Canadian Mineralogist. 40 (6): 1649–1655. Bibcode:2002CaMin..40.1649M. doi:10.2113/gscanmin.40.6.1649. ISSN 0008-4476. http://www.canmin.org/cgi/doi/10.2113/gscanmin.40.6.1649
Repina, S. A.; Popova, V. I.; Churin, E. I.; Belogub, E. V.; Khiller, V. V. (December 2011). "Florencite-(Sm)—(Sm,Nd)Al3(PO4)2(OH)6: a new mineral species of the alunite–jarosite group from the subpolar Urals". Geology of Ore Deposits. 53 (7): 564–574. Bibcode:2011GeoOD..53..564R. doi:10.1134/S1075701511070191. ISSN 1075-7015. S2CID 97229772. https://link.springer.com/10.1134/S1075701511070191
"Monazite-(Sm): Monazite-(Sm) mineral information and data". Mindat.org. Retrieved 2016-03-04. http://www.mindat.org/min-11438.html
"Florencite-(Sm): Florencite-(Sm) mineral information and data". Mindat.org. Retrieved 2016-03-04. http://www.mindat.org/min-42495.html
Human Health Fact Sheet on Samarium Archived 2012-04-07 at the Wayback Machine, Los Alamos National Laboratory http://www.ead.anl.gov/pub/doc/samarium.pdf
Bradsher, Keith (2025-06-09). "China's Chokehold on This Obscure Mineral Threatens the West's Militaries". Retrieved 10 June 2025. https://www.nytimes.com/2025/06/09/business/china-rare-earth-samarium-fighter-jets.html
Bradsher, Keith (2025-06-09). "China's Chokehold on This Obscure Mineral Threatens the West's Militaries". Retrieved 10 June 2025. https://www.nytimes.com/2025/06/09/business/china-rare-earth-samarium-fighter-jets.html
Marchio, Cathy (Apr 16, 2024). "Two Grades of Samarium Cobalt Magnets: SmCo5 & Sm2Co17". Stanford Magnets. Retrieved Aug 23, 2024. https://www.stanfordmagnets.com/two-grades-of-samarium-cobalt-magnets-smco5-sm2co17.html
Emsley, John (2001). "Samarium". Nature's Building Blocks: An A–Z Guide to the Elements. Oxford, England, UK: Oxford University Press. pp. 371–374. ISBN 0-19-850340-7. 0-19-850340-7
Bradsher, Keith (2025-06-09). "China's Chokehold on This Obscure Mineral Threatens the West's Militaries". Retrieved 10 June 2025. https://www.nytimes.com/2025/06/09/business/china-rare-earth-samarium-fighter-jets.html
Bradsher, Keith (2025-06-09). "China's Chokehold on This Obscure Mineral Threatens the West's Militaries". Retrieved 10 June 2025. https://www.nytimes.com/2025/06/09/business/china-rare-earth-samarium-fighter-jets.html
Hammond, C. R. (2004-06-29). "The Elements". Handbook of Chemistry and Physics (81st ed.). Boca Raton New York Washington: CRC press. pp. 4–27. ISBN 978-0-8493-0481-1. 978-0-8493-0481-1
Hajra, S.; Maji, B.; Bar, S. (2007). "Samarium Triflate-Catalyzed Halogen-Promoted Friedel-Crafts Alkylation with Alkenes". Org. Lett. 9 (15): 2783–2786. doi:10.1021/ol070813t. PMID 17585769. /wiki/Org._Lett.
Cotton, F. Albert; Wilkinson, Geoffrey; Murillo, Carlos A.; Bochmann, Manfred (2007). Advanced inorganic chemistry (6th ed.). New Delhi, India: Wiley. p. 1128. ISBN 978-81-265-1338-3. 978-81-265-1338-3
Emsley, John (2001). "Samarium". Nature's Building Blocks: An A–Z Guide to the Elements. Oxford, England, UK: Oxford University Press. pp. 371–374. ISBN 0-19-850340-7. 0-19-850340-7
Hammond, C. R. (2004-06-29). "The Elements". Handbook of Chemistry and Physics (81st ed.). Boca Raton New York Washington: CRC press. pp. 4–27. ISBN 978-0-8493-0481-1. 978-0-8493-0481-1
Hammond, C. R. (2004-06-29). "The Elements". Handbook of Chemistry and Physics (81st ed.). Boca Raton New York Washington: CRC press. pp. 4–27. ISBN 978-0-8493-0481-1. 978-0-8493-0481-1
Human Health Fact Sheet on Samarium Archived 2012-04-07 at the Wayback Machine, Los Alamos National Laboratory http://www.ead.anl.gov/pub/doc/samarium.pdf
Thermal neutron capture cross sections and resonance integrals – Fission product nuclear data. ipen.br https://web.archive.org/web/20110706160607/http://www-nds.ipen.br/sgnucdat/b3.pdf
Bud, Robert and Gummett, Philip Cold War, Hot Science: Applied Research in Britain's Defence Laboratories, 1945–1990, NMSI Trading Ltd, 2002 ISBN 1-900747-47-2 p. 268 https://books.google.com/books?id=HMx_6FtHBcUC&pg=PA268
Sorokin, P. P. (1979). "Contributions of IBM to Laser Science—1960 to the Present". IBM Journal of Research and Development. 23 (5): 476. Bibcode:1979IBMJ...23..476S. doi:10.1147/rd.235.0476. /wiki/Bibcode_(identifier)
Zhang, J. (1997). "A Saturated X-ray Laser Beam at 7 Nanometers". Science. 276 (5315): 1097. doi:10.1126/science.276.5315.1097. /wiki/Doi_(identifier)
Riesen, Hans; Kaczmarek, Wieslaw (2007-08-02). "Efficient X-ray Generation of Sm2+ in Nanocrystalline BaFCl/Sm3+: a Photoluminescent X-ray Storage Phosphor". Inorganic Chemistry. 46 (18): 7235–7. doi:10.1021/ic062455g. PMID 17672448. /wiki/Doi_(identifier)
Liu, Zhiqiang; Stevens-Kalceff, Marion; Riesen, Hans (2012-03-16). "Photoluminescence and Cathodoluminescence Properties of Nanocrystalline BaFCl:Sm3+ X-ray Storage Phosphor". Journal of Physical Chemistry C. 116 (14): 8322–8331. doi:10.1021/jp301338b. /wiki/Doi_(identifier)
Wang, Xianglei; Liu, Zhiqiang; Stevens-Kalceff, Marion; Riesen, Hans (August 12, 2014). "Mechanochemical Preparation of Nanocrystalline BaFCl Doped with Samarium in the 2+ Oxidation State". Inorganic Chemistry. 53 (17): 8839–8841. doi:10.1021/ic500712b. PMID 25113662. /wiki/Doi_(identifier)
"Dosimetry&Imaging Pty Ltd". Archived from the original on 2017-09-26. Retrieved 2018-11-28. https://web.archive.org/web/20170926094926/http://oelimaging.com/
20100073997, Elmegreen, Bruce G.; Krusin-elbaum, Lia & Liu, Xiao Hu et al., "Piezo-Driven Non-Volatile Memory Cell with Hysteretic Resistance", issued 2010-03-25
https://www.freepatentsonline.com/y2010/0073997.html
"About us". tenzo-sms.ru. Retrieved 2022-12-31. https://tenzo-sms.ru/en/about
Kaminskii, V. V.; Solov'ev, S. M.; Golubkov, A. V. (2002). "Electromotive Force Generation in Homogeneously Heated Semiconducting Samarium Monosulfide". Technical Physics Letters. 28 (3): 229. Bibcode:2002TePhL..28..229K. doi:10.1134/1.1467284. S2CID 122463906. Archived from the original on 2012-03-15. https://web.archive.org/web/20120315180549/http://www.tenzo-sms.ru/en/articles/5
Bowen, Robert and Attendorn, H -G Isotopes in the Earth Sciences, Springer, 1988, ISBN 0-412-53710-9, pp. 270 ff https://books.google.com/books?id=k90iAnFereYC&pg=PA270
Baur, F.; Katelnikovas, A.; Sazirnakovas, S.; Jüstel, T. (2014). "Synthesis and Optical Properties of Li3Ba2La3(MoO4)8:Sm3+". Zeitschrift für Naturforschung B. 69 (2): 183–192. doi:10.5560/ZNB.2014-3279. S2CID 197099937. /wiki/Doi_(identifier)
Caton, Ronald G.; Pedersen, Todd R.; Groves, Keith M.; Hines, Jack; Cannon, Paul S.; Jackson-Booth, Natasha; Parris, Richard T.; Holmes, Jeffrey M.; Su, Yi-Jiun; Mishin, Evgeny V.; Roddy, Patrick A.; Viggiano, Albert A.; Shuman, Nicholas S.; Ard, Shaun G.; Bernhardt, Paul A.; Siefring, Carl L.; Retterer, John; Kudeki, Erhan; Reyes, Pablo M. (May 2017). "Artificial ionospheric modification: The Metal Oxide Space Cloud experiment" (PDF). Radio Science. 52 (5): 539–558. Bibcode:2017RaSc...52..539C. doi:10.1002/2016rs005988. S2CID 55195732. https://pure-oai.bham.ac.uk/ws/files/40897676/Caton_et_al_2017_Radio_Science.pdf
Zell, Holly (2013-06-07). "First of Four Sounding Rockets Launched from the Marshall Islands". NASA. Archived from the original on 2021-10-11. Retrieved 2019-08-15. https://web.archive.org/web/20211011040155/https://www.nasa.gov/mission_pages/sounding-rockets/news/mosc.html
Li, G.; Xiang, Z.; Yu, F.; Asaba, T.; Lawson, B.; Cai, P.; Tinsman, C.; Berkley, A.; Wolgast, S.; Eo, Y. S.; Kim, Dae-Jeong; Kurdak, C.; Allen, J. W.; Sun, K.; Chen, X. H. (2014-12-05). "Two-dimensional Fermi surfaces in Kondo insulator SmB 6". Science. 346 (6214): 1208–1212. arXiv:1306.5221. Bibcode:2014Sci...346.1208L. doi:10.1126/science.1250366. ISSN 0036-8075. PMID 25477456. S2CID 119191689. https://www.science.org/doi/10.1126/science.1250366
Botimer, J.; Kim, D. J.; Thomas, S.; Grant, T.; Fisk, Z.; Jing Xia (2013). "Robust Surface Hall Effect and Nonlocal Transport in SmB6: Indication for an Ideal Topological Insulator". Scientific Reports. 3 (3150): 3150. arXiv:1211.6769. Bibcode:2013NatSR...3.3150K. doi:10.1038/srep03150. PMC 3818682. PMID 24193196. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3818682
Zhang, Xiaohang; Butch, N. P.; Syers, P.; Ziemak, S.; Greene, Richard L.; Paglione, Johnpierre (2013). "Hybridization, Correlation, and In-Gap States in the Kondo Insulator SmB6". Physical Review X. 3 (1): 011011. arXiv:1211.5532. Bibcode:2013PhRvX...3a1011Z. doi:10.1103/PhysRevX.3.011011. S2CID 53638956. /wiki/ArXiv_(identifier)
Wolgast, Steven; Kurdak, Cagliyan; Sun, Kai; et al. (2012). "Low-temperature surface conduction in the Kondo insulator SmB6". Physical Review B. 88 (18): 180405. arXiv:1211.5104. Bibcode:2013PhRvB..88r0405W. doi:10.1103/PhysRevB.88.180405. S2CID 119242604. /wiki/ArXiv_(identifier)
Emsley, John (2001). "Samarium". Nature's Building Blocks: An A–Z Guide to the Elements. Oxford, England, UK: Oxford University Press. pp. 371–374. ISBN 0-19-850340-7. 0-19-850340-7
Bayouth, J. E.; Macey, D. J.; Kasi, L. P.; Fossella, F. V. (1994). "Dosimetry and toxicity of samarium-153-EDTMP administered for bone pain due to skeletal metastases". Journal of Nuclear Medicine. 35 (1): 63–69. PMID 7505819. https://jnm.snmjournals.org/content/35/1/63.long
Human Health Fact Sheet on Samarium Archived 2012-04-07 at the Wayback Machine, Los Alamos National Laboratory http://www.ead.anl.gov/pub/doc/samarium.pdf