It is a theorem of Adolf Hurwitz that the F-isomorphism classes of the norm form are in one-to-one correspondence with the isomorphism classes of octonion F-algebras. Moreover, the possible norm forms are exactly the Pfister 3-forms over F.4
Since any two octonion F-algebras become isomorphic over the algebraic closure of F, one can apply the ideas of non-abelian Galois cohomology. In particular, by using the fact that the automorphism group of the split octonions is the split algebraic group G2, one sees the correspondence of isomorphism classes of octonion F-algebras with isomorphism classes of G2-torsors over F. These isomorphism classes form the non-abelian Galois cohomology set H 1 ( F , G 2 ) {\displaystyle H^{1}(F,G_{2})} .5
Schafer (1995) p.48 ↩
Max Zorn (1931) "Alternativekörper und quadratische Systeme", Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 9(3/4): 395–402, see 399 /wiki/Max_Zorn ↩
Furey, C. (10 October 2018). "Three generations, two unbroken gauge symmetries, and one eight-dimensional algebra". Physics Letters B. 785: 84–89. arXiv:1910.08395. Bibcode:2018PhLB..785...84F. doi:10.1016/j.physletb.2018.08.032. ISSN 0370-2693. https://doi.org/10.1016%2Fj.physletb.2018.08.032 ↩
Lam (2005) p.327 ↩
Garibaldi, Merkurjev & Serre (2003) pp.9-10,44 ↩