Piecewise linear models such as Markov chains, continuous-time Markov chains, the M/G/1 queue, the GI/G/1 queue and the fluid queue can be encapsulated as PDMPs with simple differential equations.4
PDMPs have been shown useful in ruin theory,5 queueing theory,67 for modelling biochemical processes such as DNA replication in eukaryotes and subtilin production by the organism B. subtilis,8 and for modelling earthquakes.9 Moreover, this class of processes has been shown to be appropriate for biophysical neuron models with stochastic ion channels.10
Löpker and Palmowski have shown conditions under which a time reversed PDMP is a PDMP.11 General conditions are known for PDMPs to be stable.12
Galtier et al.13 studied the law of the trajectories of PDMP and provided a reference measure in order to express a density of a trajectory of the PDMP. Their work opens the way to any application using densities of trajectory. (For instance, they used the density of a trajectories to perform importance sampling, this work was further developed by Chennetier and Al.14 to estimate the reliability of industrial systems.)
Davis, M. H. A. (1984). "Piecewise-Deterministic Markov Processes: A General Class of Non-Diffusion Stochastic Models". Journal of the Royal Statistical Society. Series B (Methodological). 46 (3): 353–388. doi:10.1111/j.2517-6161.1984.tb01308.x. JSTOR 2345677. /wiki/Mark_H._A._Davis ↩
Costa, O. L. V.; Dufour, F. (2010). "Average Continuous Control of Piecewise Deterministic Markov Processes". SIAM Journal on Control and Optimization. 48 (7): 4262. arXiv:0809.0477. doi:10.1137/080718541. S2CID 14257280. /wiki/ArXiv_(identifier) ↩
Embrechts, P.; Schmidli, H. (1994). "Ruin Estimation for a General Insurance Risk Model". Advances in Applied Probability. 26 (2): 404–422. doi:10.2307/1427443. JSTOR 1427443. S2CID 124108500. /wiki/Doi_(identifier) ↩
Browne, Sid; Sigman, Karl (1992). "Work-Modulated Queues with Applications to Storage Processes". Journal of Applied Probability. 29 (3): 699–712. doi:10.2307/3214906. JSTOR 3214906. S2CID 122273001. /wiki/Doi_(identifier) ↩
Boxma, O.; Kaspi, H.; Kella, O.; Perry, D. (2005). "On/off Storage Systems with State-Dependent Input, Output, and Switching Rates". Probability in the Engineering and Informational Sciences. 19: 1–14. CiteSeerX 10.1.1.556.6718. doi:10.1017/S0269964805050011. S2CID 24065678. /wiki/Onno_Boxma ↩
Cassandras, Christos G.; Lygeros, John (2007). "Chapter 9. Stochastic Hybrid Modeling of Biochemical Processes" (PDF). Stochastic Hybrid Systems. CRC Press. ISBN 9780849390838. 9780849390838 ↩
Ogata, Y.; Vere-Jones, D. (1984). "Inference for earthquake models: A self-correcting model". Stochastic Processes and Their Applications. 17 (2): 337. doi:10.1016/0304-4149(84)90009-7. https://doi.org/10.1016%2F0304-4149%2884%2990009-7 ↩
Pakdaman, K.; Thieullen, M.; Wainrib, G. (September 2010). "Fluid limit theorems for stochastic hybrid systems with application to neuron models". Advances in Applied Probability. 42 (3): 761–794. arXiv:1001.2474. doi:10.1239/aap/1282924062. S2CID 18894661. https://sites.google.com/site/gwainrib/papers ↩
Löpker, A.; Palmowski, Z. (2013). "On time reversal of piecewise deterministic Markov processes". Electronic Journal of Probability. 18. arXiv:1110.3813. doi:10.1214/EJP.v18-1958. S2CID 1453859. /wiki/ArXiv_(identifier) ↩
Costa, O. L. V.; Dufour, F. (2008). "Stability and Ergodicity of Piecewise Deterministic Markov Processes" (PDF). SIAM Journal on Control and Optimization. 47 (2): 1053. doi:10.1137/060670109. http://www.producao.usp.br/bitstream/BDPI/14708/1/art_COSTA_Stability_and_ergodicity_of_piecewise_deterministic_Markov_2008.pdf ↩
Galtier, T. (2019). "On the optimal importance process for piecewise deterministic Markov process". Esaim: Ps. 23: 893–921. doi:10.1051/ps/2019015. S2CID 198467101. https://doi.org/10.1051%2Fps%2F2019015 ↩
Chennetier, G. (2022). "Adaptive importance sampling based on fault tree analysis for piecewise deterministic Markov process". arXiv:2210.16185 [stat.CO]. /wiki/ArXiv_(identifier) ↩