The concept of a humanoid robot originated in many different cultures around the world. Some of the earliest accounts of the idea of humanoid automata date to the 4th century BCE in Greek mythologies and various religious and philosophical texts from China. Physical prototypes of humanoid automata were later created in the Middle East, Italy, Japan, France and South Korea.
Humanoid robots are now used as research tools in several scientific areas. Researchers study the human body structure and behavior (biomechanics) to build humanoid robots. On the other side, the attempt to simulate the human body leads to a better understanding of it. Human cognition is a field of study which is focused on how humans learn from sensory information in order to acquire perceptual and motor skills. This knowledge is used to develop computational models of human behavior, and it has been improving over time.
It has been suggested that very advanced robotics will facilitate the enhancement of ordinary humans. See transhumanism.
Humanoid robots are a valuable resource in the world of medicine and biotechnology, as well as other fields of research such as biomechanics and cognitive science. Humanoid robots are being used to develop complex prosthetics for individuals with physical disabilities such as missing limbs. The WABIAN-2 is a new medical humanoid robot created to help patients in the rehabilitation of their lower limbs.
Humanoid robots can be used as test subjects for the practice and development of personalized healthcare aids, essentially performing as robotic nurses for demographics such as the elderly. Humanoids are also suitable for some procedurally-based vocations, such as reception-desk administrators and automotive manufacturing line workers. In essence, since they can use tools and operate equipment and vehicles designed for the human form, humanoids could theoretically perform any task a human being can, so long as they have the proper software. However, the complexity of doing so is immense.
Humanoid robots have had a long history in the realm of entertainment, from the conception and ideas in the story of Prometheus to the application and physical build of modern animatronics used for theme parks. Current uses and development of humanoid robots in theme parks are focused on creating stuntronics. Stuntronics are humanoid robots built for serving as stunt doubles, and are designed to simulate life-like, untethered, dynamic movement. Several Disney theme park shows utilize animatronic robots that look, move and speak much like human beings. Although these robots look realistic, they have no cognition or physical autonomy. Various humanoid robots and their possible applications in daily life are featured in an independent documentary film called Plug & Pray, which was released in 2010.
Though many real-world applications for humanoid robots are unexplored, their primary use is to demonstrate up-and-coming technologies. Modern examples of humanoid robots, such as the Honda Asimo, are revealed to the public in order to demonstrate new technological advancements in motor skills, such as walking, climbing, and playing an instrument. Other humanoid robots have been developed for household purposes, however excel only in single purpose skills and are far from autonomous. Humanoid robots, especially those with artificial intelligence algorithms, could be useful for future dangerous and/or distant space exploration missions, without having the need to turn back around again and return to Earth once the mission is completed.
Sensors can be classified according to the physical process with which they work or according to the type of measurement information that they give as output. In this case, the second approach was used.
In human beings, the otoliths and semi-circular canals (in the inner ear) are used to maintain balance and orientation. Additionally, humans use their own proprioceptive sensors (e.g. touch, muscle extension, limb position) to help with their orientation. Humanoid robots use accelerometers to measure the acceleration, from which velocity can be calculated by integration; tilt sensors to measure inclination; force sensors placed in robot's hands and feet to measure contact force with environment; position sensors that indicate the actual position of the robot (from which the velocity can be calculated by derivation); and even speed sensors.
Sound sensors allow humanoid robots to hear speech and environmental sounds, akin to the ears of the human being. Microphones are usually used for the robots to convey speech.
Humanoid robots are constructed in such a way that they mimic the human body. They use actuators that perform like muscles and joints, though with a different structure. The actuators of humanoid robots can be either electric, pneumatic, or hydraulic. It is ideal for these actuators to have high power, low mass, and small dimensions.
Electric actuators are the most popular types of actuators in humanoid robots. These actuators are smaller in size, and a single electric actuator may not produce enough power for a human-sized joint. Therefore, it is common to use multiple electric actuators for a single joint in a humanoid robot. An example of a humanoid robot using electric actuators is HRP-2.
Hydraulic actuators produce higher power than electric actuators and pneumatic actuators, and they have the ability to control the torque they produce better than other types of actuators. However, they can become very bulky in size. One solution to counter the size issue is electro-hydrostatic actuators (EHA). The most popular example of a humanoid robot using hydraulic actuators is the ATLAS robot made by Boston Dynamics.
Planning in robots is the process of planning out motions and trajectories for the robot to carry out. Control is the actual execution of these planned motions and trajectories. In humanoid robots, the planning must carry out biped motions, meaning that robots should plan motions similar to a human. Since one of the main uses of humanoid robots is to interact with humans, it is important for the planning and control mechanisms of humanoid robots to work in a variety of terrain and environments.
The question of walking biped robots stabilization on the surface is of great importance. Maintenance of the robot's gravity center over the center of bearing area for providing a stable position can be chosen as a goal of control.
Another characteristic of humanoid robots is that they move, gather information (using sensors) on the "real world", and interact with it. They do not stay still like factory manipulators and other robots that work in highly structured environments. To allow humanoids to move in complex environments, planning and control must focus on self-collision detection, path planning and obstacle avoidance.
Humanoid robots do not yet have some features of the human body. They include structures with variable flexibility, which provide safety (to the robot itself and to the people), and redundancy of movements, i.e. more degrees of freedom and therefore wide task availability. Although these characteristics are desirable to humanoid robots, they will bring more complexity and new problems to planning and control. The field of whole-body control deals with these issues and addresses the proper coordination of numerous degrees of freedom, e.g. to realize several control tasks simultaneously while following a given order of priority.
A common theme for the depiction of humanoid robots in science fiction pertains to how they can help humans in society or serve as threats to humanity. This theme essentially questions whether artificial intelligence is a force of good or bad for mankind. Humanoid robots that are depicted as good for society and benefit humans are Commander Data in Star Trek and C-3PO in Star Wars. Opposite portrayals where humanoid robots are shown as scary and threatening to humans are the T-800 in Terminator and Megatron in Transformers. An Indian Tamil-language film which showed the pros and cons of a humanoid robot Chitti.
Another prominent theme found in science fiction regarding humanoid robots focuses on personhood. Certain films, particularly Blade Runner and Blade Runner 2049, explore whether or not a constructed, synthetic being should be considered a person. In the films, androids called "replicants" are created indistinguishably from human beings, yet they are shunned and do not possess the same rights as humans. This theme incites audience sympathy while also sparking unease at the idea of humanoid robots mimicking humans too closely.
Humanoid robots, which are designed to resemble and mimic human form and behavior, have faced several criticisms:
Gera, Deborah Levine (2003). Ancient Greek ideas on speech, language, and civilization. Oxford: Oxford University Press. ISBN 0-19-925616-0. OCLC 52486031. 0-19-925616-0
University, Stanford (2019-02-28). "Ancient myths reveal early fantasies about artificial life". Stanford News. Retrieved 2021-11-03. https://news.stanford.edu/2019/02/28/ancient-myths-reveal-early-fantasies-artificial-life/
Needham, Joseph (1991). Science and Civilisation in China: Volume 2, History of Scientific Thought. Cambridge University Press. ISBN 978-0-521-05800-1. 978-0-521-05800-1
Needham, Joseph (1991). Science and Civilisation in China: Volume 2, History of Scientific Thought. Cambridge University Press. ISBN 978-0-521-05800-1. 978-0-521-05800-1
@NatGeoUK (2020-08-01). "Medieval robots? They were just one of this Muslim inventor's creations". National Geographic. Retrieved 2021-11-03. https://www.nationalgeographic.co.uk/history-and-civilisation/2020/08/medieval-robots-they-were-just-one-of-this-muslim-inventors
Rosheim, Mark E. (1994). Robot Evolution: The Development of Anthrobotics. Wiley-IEEE. pp. 9–10. ISBN 0-471-02622-0. 0-471-02622-0
Moran, Michael E. (December 2006). "The da Vinci Robot". Journal of Endourology. 20 (12): 986–990. doi:10.1089/end.2006.20.986. PMID 17206888. /wiki/Doi_(identifier)
Law, Jane Marie (1997). Puppets of nostalgia : the life, death, and rebirth of the Japanese Awaji ningyō tradition. Princeton, N.J.: Princeton University Press. ISBN 0-691-02894-X. OCLC 35223048. 0-691-02894-X
Brown, Steven T. (2010). Tokyo cyberpunk : posthumanism in Japanese visual culture. New York: Palgrave Macmillan. ISBN 978-0-230-10360-3. OCLC 468854451. 978-0-230-10360-3
Brown, Steven T. (2010). Tokyo cyberpunk : posthumanism in Japanese visual culture. New York: Palgrave Macmillan. ISBN 978-0-230-10360-3. OCLC 468854451. 978-0-230-10360-3
Frenchy Lunning (2008). Limits of the human. Minneapolis: University of Minnesota Press. ISBN 978-0-8166-6968-4. OCLC 320843109. 978-0-8166-6968-4
"Living Dolls: A Magical History Of The Quest For Mechanical Life by Gaby Wood". the Guardian. 2002-02-16. Retrieved 2021-11-03. https://www.theguardian.com/books/2002/feb/16/extract.gabywood
"삼성전자, 로봇 개발 기업 '레인보우 로보틱스' 자회사 편입". The Chosun Ilbo (in Korean). 2 February 2025. https://www.chosun.com/economy/tech_it/2025/01/01/MNAVQNLG75FHBKYDOLW357OYCA/
""2030년 최강국 목표"...K-휴머노이드 연합 출범". Chosun Biz. 10 April 2025. https://biz.chosun.com/policy/policy_sub/2025/04/10/YB4GUQIKBFCX3H4IKHIJPV62AQ/
Siciliano, Bruno; Khatib, Oussama (2019). "Humanoid Robots: Historical Perspective, Overview, and Scope". Humanoid Robotics: A Reference. pp. 3–8. doi:10.1007/978-94-007-6046-2_64. ISBN 978-94-007-6045-5. 978-94-007-6045-5
Yu Ogura; Aikawa, H.; Shimomura, K.; Kondo, H.; Morishima, A.; Hun-Ok Lim; Takanishi, A. (2006). "Development of a new humanoid robot WABIAN-2". Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006. pp. 76–81. doi:10.1109/ROBOT.2006.1641164. ISBN 0-7803-9505-0. 0-7803-9505-0
Yu Ogura; Aikawa, H.; Shimomura, K.; Kondo, H.; Morishima, A.; Hun-Ok Lim; Takanishi, A. (2006). "Development of a new humanoid robot WABIAN-2". Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006. pp. 76–81. doi:10.1109/ROBOT.2006.1641164. ISBN 0-7803-9505-0. 0-7803-9505-0
Yu Ogura; Aikawa, H.; Shimomura, K.; Kondo, H.; Morishima, A.; Hun-Ok Lim; Takanishi, A. (2006). "Development of a new humanoid robot WABIAN-2". Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006. pp. 76–81. doi:10.1109/ROBOT.2006.1641164. ISBN 0-7803-9505-0. 0-7803-9505-0
Siciliano, Bruno; Khatib, Oussama (2019). "Humanoid Robots: Historical Perspective, Overview, and Scope". Humanoid Robotics: A Reference. pp. 3–8. doi:10.1007/978-94-007-6046-2_64. ISBN 978-94-007-6045-5. 978-94-007-6045-5
"Stuntronics – Disney Research". la.disneyresearch.com. Retrieved 2021-10-25. https://la.disneyresearch.com/stuntronics/
"Stuntronics – Disney Research". la.disneyresearch.com. Retrieved 2021-10-25. https://la.disneyresearch.com/stuntronics/
Behnke, Sven (December 2008). "Humanoid Robots – From Fiction to Reality?". KI-Zeitschrift. 4 (8): 5–9.
Behnke, Sven (December 2008). "Humanoid Robots – From Fiction to Reality?". KI-Zeitschrift. 4 (8): 5–9.
Behnke, Sven (December 2008). "Humanoid Robots – From Fiction to Reality?". KI-Zeitschrift. 4 (8): 5–9.
Magdy, Khaled (2020-08-01). "What Are Different Types Of Sensors, Classification, Their Applications?". DeepBlue. Retrieved 2021-11-05. https://deepbluembedded.com/different-types-sensors-applications/
Siegwart, Roland; Nourbakhsh, Illah; Scaramuzza, Davide (2004). Introduction to Autonomous Mobile Robots (Intelligent Robotics and Autonomous Agents series) second edition (PDF). MIT Press. pp. Chapter 4. ISBN 0262015358. Archived (PDF) from the original on 2018-08-27. 0262015358
"How does the balance system work?". Royal Victorian Eye and Ear Hospital. Archived from the original on 2021-10-23. Retrieved 2021-11-05. https://web.archive.org/web/20211023142812/https://www.eyeandear.org.au/page/Patients/Patient_information/Balance_Disorders/How_does_the_balance_system_work/
Nistler, Jonathan R.; Selekwa, Majura F. (2011). "Gravity compensation in accelerometer measurements for robot navigation on inclined surfaces". Procedia Computer Science. 6: 413–418. doi:10.1016/j.procs.2011.08.077. https://doi.org/10.1016%2Fj.procs.2011.08.077
"Types of Tactile Sensor and Its Working Principle". ElProCus - Electronic Projects for Engineering Students. 2016-05-12. Retrieved 2021-11-05. https://www.elprocus.com/tactile-sensor-types-and-its-working/
"Content - Differential calculus and motion in a straight line". amsi.org.au. Retrieved 2021-11-05. https://amsi.org.au/ESA_Senior_Years/SeniorTopic3/3i/3i_2content_5.html
"Shadow Robot Company: The Hand Technical Specification". Archived from the original on 2008-07-08. Retrieved 2009-04-09. https://web.archive.org/web/20080708193055/http://www.shadowrobot.com/hand/techspec.shtml
Le, Huu Minh; Do, Thanh Nho; Phee, Soo Jay (2016). "A survey on actuators-driven surgical robots". Sensors and Actuators A: Physical. 247: 323–354. Bibcode:2016SeAcA.247..323L. doi:10.1016/j.sna.2016.06.010. hdl:10356/138026. /wiki/Bibcode_(identifier)
Le, Huu Minh; Do, Thanh Nho; Phee, Soo Jay (2016). "A survey on actuators-driven surgical robots". Sensors and Actuators A: Physical. 247: 323–354. Bibcode:2016SeAcA.247..323L. doi:10.1016/j.sna.2016.06.010. hdl:10356/138026. /wiki/Bibcode_(identifier)
Hashimoto, Kenji (16 November 2020). "Mechanics of humanoid robot". Advanced Robotics. 34 (21–22): 1390–1397. doi:10.1080/01691864.2020.1813624. https://doi.org/10.1080%2F01691864.2020.1813624
Stasse, O.; Flayols, T. (2019). "An Overview of Humanoid Robots Technologies". Biomechanics of Anthropomorphic Systems. Springer Tracts in Advanced Robotics. Vol. 124. pp. 281–310. doi:10.1007/978-3-319-93870-7_13. ISBN 978-3-319-93869-1. 978-3-319-93869-1
Stasse, O.; Flayols, T. (2019). "An Overview of Humanoid Robots Technologies". Biomechanics of Anthropomorphic Systems. Springer Tracts in Advanced Robotics. Vol. 124. pp. 281–310. doi:10.1007/978-3-319-93870-7_13. ISBN 978-3-319-93869-1. 978-3-319-93869-1
Hashimoto, Kenji (16 November 2020). "Mechanics of humanoid robot". Advanced Robotics. 34 (21–22): 1390–1397. doi:10.1080/01691864.2020.1813624. https://doi.org/10.1080%2F01691864.2020.1813624
Hashimoto, Kenji (16 November 2020). "Mechanics of humanoid robot". Advanced Robotics. 34 (21–22): 1390–1397. doi:10.1080/01691864.2020.1813624. https://doi.org/10.1080%2F01691864.2020.1813624
Hashimoto, Kenji (16 November 2020). "Mechanics of humanoid robot". Advanced Robotics. 34 (21–22): 1390–1397. doi:10.1080/01691864.2020.1813624. https://doi.org/10.1080%2F01691864.2020.1813624
Stasse, O.; Flayols, T. (2019). "An Overview of Humanoid Robots Technologies". Biomechanics of Anthropomorphic Systems. Springer Tracts in Advanced Robotics. Vol. 124. pp. 281–310. doi:10.1007/978-3-319-93870-7_13. ISBN 978-3-319-93869-1. 978-3-319-93869-1
Stasse, O.; Flayols, T. (2019). "An Overview of Humanoid Robots Technologies". Biomechanics of Anthropomorphic Systems. Springer Tracts in Advanced Robotics. Vol. 124. pp. 281–310. doi:10.1007/978-3-319-93870-7_13. ISBN 978-3-319-93869-1. 978-3-319-93869-1
Hashimoto, Kenji (16 November 2020). "Mechanics of humanoid robot". Advanced Robotics. 34 (21–22): 1390–1397. doi:10.1080/01691864.2020.1813624. https://doi.org/10.1080%2F01691864.2020.1813624
Stasse, O.; Flayols, T. (2019). "An Overview of Humanoid Robots Technologies". Biomechanics of Anthropomorphic Systems. Springer Tracts in Advanced Robotics. Vol. 124. pp. 281–310. doi:10.1007/978-3-319-93870-7_13. ISBN 978-3-319-93869-1. 978-3-319-93869-1
Stasse, O.; Flayols, T. (2019). "An Overview of Humanoid Robots Technologies". Biomechanics of Anthropomorphic Systems. Springer Tracts in Advanced Robotics. Vol. 124. pp. 281–310. doi:10.1007/978-3-319-93870-7_13. ISBN 978-3-319-93869-1. 978-3-319-93869-1
Stasse, O.; Flayols, T. (2019). "An Overview of Humanoid Robots Technologies". Biomechanics of Anthropomorphic Systems. Springer Tracts in Advanced Robotics. Vol. 124. pp. 281–310. doi:10.1007/978-3-319-93870-7_13. ISBN 978-3-319-93869-1. 978-3-319-93869-1
Hashimoto, Kenji (16 November 2020). "Mechanics of humanoid robot". Advanced Robotics. 34 (21–22): 1390–1397. doi:10.1080/01691864.2020.1813624. https://doi.org/10.1080%2F01691864.2020.1813624
Stasse, O.; Flayols, T. (2019). "An Overview of Humanoid Robots Technologies". Biomechanics of Anthropomorphic Systems. Springer Tracts in Advanced Robotics. Vol. 124. pp. 281–310. doi:10.1007/978-3-319-93870-7_13. ISBN 978-3-319-93869-1. 978-3-319-93869-1
Stasse, O.; Flayols, T. (2019). "An Overview of Humanoid Robots Technologies". Biomechanics of Anthropomorphic Systems. Springer Tracts in Advanced Robotics. Vol. 124. pp. 281–310. doi:10.1007/978-3-319-93870-7_13. ISBN 978-3-319-93869-1. 978-3-319-93869-1
Khatib, Oussama (September 1994). "Towards integrated robot planning and control". IFAC Proceedings Volumes. 27 (14): 351–359. doi:10.1016/S1474-6670(17)47337-X. https://doi.org/10.1016%2FS1474-6670%2817%2947337-X
Khatib, Oussama (September 1994). "Towards integrated robot planning and control". IFAC Proceedings Volumes. 27 (14): 351–359. doi:10.1016/S1474-6670(17)47337-X. https://doi.org/10.1016%2FS1474-6670%2817%2947337-X
Fu, Chenglong; Shuai, Mei; Xu, Kai; Zhao, Jiandong; Wang, Jianmei; Huang, Yuanlin; Chen, Ken (2006). "Planning and Control for THBIP-I Humanoid Robot". 2006 International Conference on Mechatronics and Automation. pp. 1066–1071. doi:10.1109/ICMA.2006.257773. ISBN 1-4244-0465-7. 1-4244-0465-7
Fu, Chenglong; Shuai, Mei; Xu, Kai; Zhao, Jiandong; Wang, Jianmei; Huang, Yuanlin; Chen, Ken (2006). "Planning and Control for THBIP-I Humanoid Robot". 2006 International Conference on Mechatronics and Automation. pp. 1066–1071. doi:10.1109/ICMA.2006.257773. ISBN 1-4244-0465-7. 1-4244-0465-7
Bazylev, D.N.; Pyrkin, A.A.; Margun, A.A.; Zimenko, K.A.; Kremlev, A.S.; Ibraev, D.D.; Cech, M. (15 May 2015). "Approaches for stabilizing of biped robots in a standing position on movable support". Scientific and Technical Journal of Information Technologies, Mechanics and Optics: 418–425. doi:10.17586/2226-1494-2015-15-3-418-425. https://doi.org/10.17586%2F2226-1494-2015-15-3-418-425
Bazylev, D.N.; Pyrkin, A.A.; Margun, A.A.; Zimenko, K.A.; Kremlev, A.S.; Ibraev, D.D.; Cech, M. (15 May 2015). "Approaches for stabilizing of biped robots in a standing position on movable support". Scientific and Technical Journal of Information Technologies, Mechanics and Optics: 418–425. doi:10.17586/2226-1494-2015-15-3-418-425. https://doi.org/10.17586%2F2226-1494-2015-15-3-418-425
Fu, Chenglong; Shuai, Mei; Xu, Kai; Zhao, Jiandong; Wang, Jianmei; Huang, Yuanlin; Chen, Ken (2006). "Planning and Control for THBIP-I Humanoid Robot". 2006 International Conference on Mechatronics and Automation. pp. 1066–1071. doi:10.1109/ICMA.2006.257773. ISBN 1-4244-0465-7. 1-4244-0465-7
Fu, Chenglong; Shuai, Mei; Xu, Kai; Zhao, Jiandong; Wang, Jianmei; Huang, Yuanlin; Chen, Ken (2006). "Planning and Control for THBIP-I Humanoid Robot". 2006 International Conference on Mechatronics and Automation. pp. 1066–1071. doi:10.1109/ICMA.2006.257773. ISBN 1-4244-0465-7. 1-4244-0465-7
Raković, Mirko; Savić, Srdjan; Santos-Victor, José; Nikolić, Milutin; Borovac, Branislav (4 June 2019). "Human-Inspired Online Path Planning and Biped Walking Realization in Unknown Environment". Frontiers in Neurorobotics. 13: 36. doi:10.3389/fnbot.2019.00036. PMC 6558152. PMID 31214011. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6558152
Raković, Mirko; Savić, Srdjan; Santos-Victor, José; Nikolić, Milutin; Borovac, Branislav (4 June 2019). "Human-Inspired Online Path Planning and Biped Walking Realization in Unknown Environment". Frontiers in Neurorobotics. 13: 36. doi:10.3389/fnbot.2019.00036. PMC 6558152. PMID 31214011. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6558152
Raković, Mirko; Savić, Srdjan; Santos-Victor, José; Nikolić, Milutin; Borovac, Branislav (4 June 2019). "Human-Inspired Online Path Planning and Biped Walking Realization in Unknown Environment". Frontiers in Neurorobotics. 13: 36. doi:10.3389/fnbot.2019.00036. PMC 6558152. PMID 31214011. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6558152
Du, Guanglong; Long, Shuaiying; Li, Fang; Huang, Xin (6 November 2018). "Active Collision Avoidance for Human-Robot Interaction With UKF, Expert System, and Artificial Potential Field Method". Frontiers in Robotics and AI. 5: 125. doi:10.3389/frobt.2018.00125. PMC 7805694. PMID 33501004. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7805694
Yamane, Katsu; Murai, Akihiko (2018). "A Comparative Study Between Humans and Humanoid Robots". Humanoid Robotics: A Reference. pp. 1–20. doi:10.1007/978-94-007-7194-9_7-1. ISBN 978-94-007-7194-9. 978-94-007-7194-9
Yamane, Katsu; Murai, Akihiko (2018). "A Comparative Study Between Humans and Humanoid Robots". Humanoid Robotics: A Reference. pp. 1–20. doi:10.1007/978-94-007-7194-9_7-1. ISBN 978-94-007-7194-9. 978-94-007-7194-9
"Robots with high degrees of freedom face barriers to adoption". Collaborative Robotics Trends. 2019-10-02. Retrieved 2021-11-04. https://www.cobottrends.com/robots-with-high-degrees-of-freedom-face-barriers-to-adoption/
Khatib, O.; Sentis, L.; Park, J.; Warren, J. (March 2004). "Whole-Body Dynamic Behavior and Control of Human-Like Robots". International Journal of Humanoid Robotics. 1 (1): 29–43. doi:10.1142/S0219843604000058. /wiki/Doi_(identifier)
Whole-Body Impedance Control of Wheeled Humanoid Robots. Springer Tracts in Advanced Robotics. Vol. 116. 2016. doi:10.1007/978-3-319-40557-5. ISBN 978-3-319-40556-8. 978-3-319-40556-8
Needham, Joseph (1991). Science and Civilisation in China: Volume 2, History of Scientific Thought. Cambridge University Press. ISBN 978-0-521-05800-1. 978-0-521-05800-1
Hero of Alexandria; Bennet Woodcroft (trans.) (1851). Temple Doors opened by Fire on an Altar. Pneumatics of Hero of Alexandria. London: Taylor Walton and Maberly (online edition from University of Rochester, Rochester, NY). Retrieved on 2008-04-23.
Fowler, Charles B. (October 1967), "The Museum of Music: A History of Mechanical Instruments", Music Educators Journal 54 (2): 45-9
Rosheim, Mark E. (1994). Robot Evolution: The Development of Anthrobotics. Wiley-IEEE. pp. 9–10. ISBN 0-471-02622-0. 0-471-02622-0
Ancient Discoveries, Episode 11: Ancient Robots. History Channel. Archived from the original on 2014-03-01. Retrieved 2008-09-06 – via YouTube. https://web.archive.org/web/20140301151115/https://www.youtube.com/watch?v=rxjbaQl0ad8
Moran, Michael E. (December 2006). "The da Vinci Robot". Journal of Endourology. 20 (12): 986–990. doi:10.1089/end.2006.20.986. PMID 17206888. /wiki/Doi_(identifier)
"Living Dolls: A Magical History Of The Quest For Mechanical Life by Gaby Wood". the Guardian. 2002-02-16. Retrieved 2021-11-03. https://www.theguardian.com/books/2002/feb/16/extract.gabywood
"Robot History at iiRobotics: The Robot Shop". Archived from the original on 2006-05-22. Retrieved 2005-11-15. https://web.archive.org/web/20060522145917/http://www.iirobotics.com/webpages/robothistory.php
"Nikola Tesla". HISTORY. 13 March 2020. Retrieved 2021-11-04. https://www.history.com/topics/inventions/nikola-tesla
"MegaGiant Robotics". megagiant.com. Archived from the original on 2007-08-19. Retrieved 2005-11-15. https://web.archive.org/web/20070819123742/http://robotics.megagiant.com/history.html
Fell, Jade (2016-10-20). "Britain's first robot brought back to life by the Science Museum". eandt.theiet.org. Retrieved 2021-11-04. https://eandt.theiet.org/content/articles/2016/10/eric-britain-s-first-robot-brought-back-to-life-by-the-science-museum/
"Elektro the Moto-Man Had the Biggest Brain at the 1939 World's Fair". IEEE Spectrum. 2018-09-28. Retrieved 2021-11-04. https://spectrum.ieee.org/elektro-the-motoman-had-the-biggest-brain-at-the-1939-worlds-fair
US, Christoph Salge,The Conversation. "Asimov's Laws Won't Stop Robots from Harming Humans, So We've Developed a Better Solution". Scientific American. Retrieved 2021-11-04.{{cite web}}: CS1 maint: multiple names: authors list (link) https://www.scientificamerican.com/article/asimovs-laws-wont-stop-robots-from-harming-humans-so-weve-developed-a-better-solution/
Wiener, Norbert (1948). Cybernetics: Or Control and Communication in the Animal and the Machine. United States: Massachusetts Institute of Technology. ISBN 0-262-23007-0. {{cite book}}: ISBN / Date incompatibility (help)[page needed] 0-262-23007-0
"The Robot Hall of Fame - Powered by Carnegie Mellon University". www.robothalloffame.org. Retrieved 2021-11-04. http://www.robothalloffame.org/inductees/03inductees/unimate.html
"Humanoid History -WABOT-". www.humanoid.waseda.ac.jp. Archived from the original on 1 September 2017. Retrieved 3 May 2018. https://web.archive.org/web/20170901004318/http://www.humanoid.waseda.ac.jp/booklet/kato_2-j.html
Cafolla, D.; Ceccarelli, M. (2016). "Experimental Inspiration and Rapid Prototyping of a Novel Humanoid Torso". Robotics and Mechatronics. Mechanisms and Machine Science. Vol. 37. pp. 65–74. doi:10.1007/978-3-319-22368-1_7. ISBN 978-3-319-22367-4. 978-3-319-22367-4
"Historical Android Projects". androidworld.com. Archived from the original on 2005-11-25. Retrieved 2005-11-15. https://web.archive.org/web/20051125164748/http://www.androidworld.com/prod06.htm
Robots: From Science Fiction to Technological Revolution, page 130 //archive.org/details/robotsfromscienc0000ichb
Duffy, Vincent G. (19 April 2016). Handbook of Digital Human Modeling: Research for Applied Ergonomics and Human Factors Engineering. CRC Press. ISBN 9781420063523. Retrieved 3 May 2018 – via Google Books.[page needed] 9781420063523
Whitney, Daniel (1969). "Resolved Motion Rate Control of Manipulators and Human Prostheses". IEEE Transactions on Man Machine Systems. 10 (2): 47–53. doi:10.1109/TMMS.1969.299896. /wiki/Doi_(identifier)
Vukobratović CV[permanent dead link] http://www.imp.bg.ac.rs/prez/lab150/eng.pdf
"Exoskeletons History - part 4". www.mechatech.co.uk. Retrieved 2021-11-05. https://www.mechatech.co.uk/journal/exoskeleton-history-part-4
"Electric Dreams - Marc Raibert". robosapiens.mit.edu. Archived from the original on 8 May 2005. Retrieved 3 May 2018. https://web.archive.org/web/20050508021438/http://robosapiens.mit.edu/electric3.htm
"Archived copy". Archived from the original on 2005-10-19. Retrieved 2005-11-15.{{cite web}}: CS1 maint: archived copy as title (link) https://web.archive.org/web/20051019001748/http://www.nosc.mil/robots/telepres/greenman/greenman.html
"Historical Android Projects". androidworld.com. Archived from the original on 2005-11-25. Retrieved 2005-11-15. https://web.archive.org/web/20051125164748/http://www.androidworld.com/prod06.htm
"Historical Android Projects". androidworld.com. Archived from the original on 2005-11-25. Retrieved 2005-11-15. https://web.archive.org/web/20051125164748/http://www.androidworld.com/prod06.htm
"Honda|ASIMO|ロボット開発の歴史". honda.co.jp. Archived from the original on 2005-12-29. Retrieved 2005-11-15. https://web.archive.org/web/20051229200907/http://www.honda.co.jp/ASIMO/history/index.html
"Historical Android Projects". androidworld.com. Archived from the original on 2005-11-25. Retrieved 2005-11-15. https://web.archive.org/web/20051125164748/http://www.androidworld.com/prod06.htm
"droidlogic.com". Archived from the original on January 22, 2008. https://web.archive.org/web/20080122013123/http://www.droidlogic.com/
"Honda|ASIMO|ロボット開発の歴史". honda.co.jp. Archived from the original on 2005-12-29. Retrieved 2005-11-15. https://web.archive.org/web/20051229200907/http://www.honda.co.jp/ASIMO/history/index.html
Hashimoto, S.; Narita, S.; Kasahara, H.; Shirai, K.; Kobayashi, T.; Takanishi, A.; Sugano, S.; Yamaguchi, J.; Sawada, H.; Takanobu, H.; Shibuya, K.; Morita, T.; Kurata, T.; Onoe, N.; Ouchi, K.; Noguchi, T.; Niwa, Y.; Nagayama, S.; Tabayashi, H.; Matsui, I.; Obata, M.; Matsuzaki, H.; Murasugi, A.; Kobayashi, T.; Haruyama, S.; Okada, T.; Hidaki, Y.; Taguchi, Y.; Hoashi, K.; Morikawa, E.; Iwano, Y.; Araki, D.; Suzuki, J.; Yokoyama, M.; Dawa, I.; Nishino, D.; Inoue, S.; Hirano, T.; Soga, E.; Gen, S.; Yanada, T.; Kato, K.; Sakamoto, S.; Ishii, Y.; Matsuo, S.; Yamamoto, Y.; Sato, K.; Hagiwara, T.; Ueda, T.; Honda, N.; Hashimoto, K.; Hanamoto, T.; Kayaba, S.; Kojima, T.; Iwata, H.; Kubodera, H.; Matsuki, R.; Nakajima, T.; Nitto, K.; Yamamoto, D.; Kamizaki, Y.; Nagaike, S.; Kunitake, Y.; Morita, S. (2002). "Humanoid Robots in Waseda University—Hadaly-2 and WABIAN". Autonomous Robots. 12 (1): 25–38. doi:10.1023/A:1013202723953. /wiki/Doi_(identifier)
Hashimoto, S.; Narita, S.; Kasahara, H.; Shirai, K.; Kobayashi, T.; Takanishi, A.; Sugano, S.; Yamaguchi, J.; Sawada, H.; Takanobu, H.; Shibuya, K.; Morita, T.; Kurata, T.; Onoe, N.; Ouchi, K.; Noguchi, T.; Niwa, Y.; Nagayama, S.; Tabayashi, H.; Matsui, I.; Obata, M.; Matsuzaki, H.; Murasugi, A.; Kobayashi, T.; Haruyama, S.; Okada, T.; Hidaki, Y.; Taguchi, Y.; Hoashi, K.; Morikawa, E.; Iwano, Y.; Araki, D.; Suzuki, J.; Yokoyama, M.; Dawa, I.; Nishino, D.; Inoue, S.; Hirano, T.; Soga, E.; Gen, S.; Yanada, T.; Kato, K.; Sakamoto, S.; Ishii, Y.; Matsuo, S.; Yamamoto, Y.; Sato, K.; Hagiwara, T.; Ueda, T.; Honda, N.; Hashimoto, K.; Hanamoto, T.; Kayaba, S.; Kojima, T.; Iwata, H.; Kubodera, H.; Matsuki, R.; Nakajima, T.; Nitto, K.; Yamamoto, D.; Kamizaki, Y.; Nagaike, S.; Kunitake, Y.; Morita, S. (2002). "Humanoid Robots in Waseda University—Hadaly-2 and WABIAN". Autonomous Robots. 12 (1): 25–38. doi:10.1023/A:1013202723953. /wiki/Doi_(identifier)
"Historical Android Projects". androidworld.com. Archived from the original on 2005-11-25. Retrieved 2005-11-15. https://web.archive.org/web/20051125164748/http://www.androidworld.com/prod06.htm
Bishay, Magued; Peters, R. Alan; Wilkes, Don M.; Kawamura, Kazuhiko (1997-09-26). Casasent, David P. (ed.). "Hand-eye coordination with an active camera head". Intelligent Robots and Computer Vision Xvi: Algorithms. 3208: 406–417. Bibcode:1997SPIE.3208..406B. doi:10.1117/12.290312. http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=932138
Hashimoto, S.; Narita, S.; Kasahara, H.; Shirai, K.; Kobayashi, T.; Takanishi, A.; Sugano, S.; Yamaguchi, J.; Sawada, H.; Takanobu, H.; Shibuya, K.; Morita, T.; Kurata, T.; Onoe, N.; Ouchi, K.; Noguchi, T.; Niwa, Y.; Nagayama, S.; Tabayashi, H.; Matsui, I.; Obata, M.; Matsuzaki, H.; Murasugi, A.; Kobayashi, T.; Haruyama, S.; Okada, T.; Hidaki, Y.; Taguchi, Y.; Hoashi, K.; Morikawa, E.; Iwano, Y.; Araki, D.; Suzuki, J.; Yokoyama, M.; Dawa, I.; Nishino, D.; Inoue, S.; Hirano, T.; Soga, E.; Gen, S.; Yanada, T.; Kato, K.; Sakamoto, S.; Ishii, Y.; Matsuo, S.; Yamamoto, Y.; Sato, K.; Hagiwara, T.; Ueda, T.; Honda, N.; Hashimoto, K.; Hanamoto, T.; Kayaba, S.; Kojima, T.; Iwata, H.; Kubodera, H.; Matsuki, R.; Nakajima, T.; Nitto, K.; Yamamoto, D.; Kamizaki, Y.; Nagaike, S.; Kunitake, Y.; Morita, S. (2002). "Humanoid Robots in Waseda University—Hadaly-2 and WABIAN". Autonomous Robots. 12 (1): 25–38. doi:10.1023/A:1013202723953. /wiki/Doi_(identifier)
"Honda|ASIMO|ロボット開発の歴史". honda.co.jp. Archived from the original on 2005-12-29. Retrieved 2005-11-15. https://web.archive.org/web/20051229200907/http://www.honda.co.jp/ASIMO/history/index.html
"QRIO: The Robot That Could". IEEE Spectrum. 2004-05-22. Retrieved 2021-11-05. https://spectrum.ieee.org/qrio-the-robot-that-could
"Research & Development". Archived from the original on 2008-05-09. Retrieved 2008-05-21. https://web.archive.org/web/20080509070349/http://www.fujitsu.com/global/about/rd/200506hoap-series.html
"Humanoid Robotics". Archived from the original on 2016-03-04. Retrieved 2012-10-18. https://web.archive.org/web/20160304072825/http://global.kawada.jp/mechatronics/hrp2.html
"TUM - Lehrstuhl für angewandte Mechanik: Zweibeinige Laufmaschine JOHNNIE". Archived from the original on 2006-06-15. Retrieved 2007-12-07. https://web.archive.org/web/20060615103538/http://www.amm.mw.tum.de/index.php?id=182
"新サイトへ". kokoro-dreams.co.jp. Archived from the original on 2006-10-23. https://web.archive.org/web/20061023163520/http://www.kokoro-dreams.co.jp/english/robot/act/index.html
"Humanoid Robot - Dynamics and Robotics Center". Archived from the original on 2016-09-19. Retrieved 2016-09-18. https://web.archive.org/web/20160919001659/http://drc.somee.com/web/en/content/Projects/HumanoidRobot.asp
"PKD Android". pkdandroid.org. Archived from the original on 2009-10-01. Retrieved 2019-01-29. https://web.archive.org/web/20091001204846/http://www.pkdandroid.org/
"NEWS wakamaru". Archived from the original on 2007-07-01. Retrieved 2007-07-02. https://web.archive.org/web/20070701034636/http://www.mhi.co.jp/kobe/wakamaru/english/news/index.html
"Aldebaran Robotics". Archived from the original on 2010-06-14. Retrieved 2012-10-18. https://web.archive.org/web/20100614180833/http://www.aldebaran-robotics.com/en
"Aldebaran Robotics". Archived from the original on 2010-06-14. Retrieved 2012-10-18. https://web.archive.org/web/20100614180833/http://www.aldebaran-robotics.com/en
Eduard Gamonal. "PAL Robotics — advanced full-size humanoid service robots for events and research world-wide". pal-robotics.com. Archived from the original on 2012-01-04. https://web.archive.org/web/20120104180912/http://www.pal-robotics.com/robots/reem-a
"iCub.org". Archived from the original on 2010-07-16. Retrieved 2012-10-18. https://web.archive.org/web/20100716044817/http://www.icub.org/
Erico Guizzo. "Humanoid Robot Mahru Mimics a Person's Movements in Real Time". IEEE. Archived from the original on 2012-10-20. https://web.archive.org/web/20121020000858/https://spectrum.ieee.org/automaton/robotics/humanoids/042710-humanoid-robot-mahru-real-time-teleoperation
Roxana Deduleasa (5 December 2007). "I, the Ping-Pong Robot!". softpedia. Archived from the original on 2 February 2009. Retrieved 5 May 2009. https://web.archive.org/web/20090202113848/http://news.softpedia.com/news/I-The-Ping-pong-Robot-72870.shtml
早稲田大学 理工学部 機械工学科 菅野研究室 TWENDYチーム. "TWENDY-ONE". twendyone.com. Archived from the original on 2012-12-21. http://www.twendyone.com
"Der Mensch im Mittelpunkt - DLR präsentiert auf der AUTOMATICA ein neues Chirurgie-System". DLR. Archived from the original on 2014-04-29. Retrieved 2015-12-09. https://web.archive.org/web/20140429050522/http://www.dlr.de/desktopdefault.aspx/tabid-667/7411_read-12710/7411_page-4/
"Best Inventions Of 2008". Time. 2008-10-29. Archived from the original on 2012-11-07. https://web.archive.org/web/20121107230710/http://www.time.com/time/specials/packages/article/0,28804,1852747_1854195_1854135,00.html
"Personal Robots Group". Archived from the original on 2010-04-14. https://web.archive.org/web/20100414191124/http://robotic.media.mit.edu/index.html
"Meka Robotics LLC". Archived from the original on 2011-01-02. https://web.archive.org/web/20110102134806/http://mekabot.com/
"Overview". Archived from the original on 2010-04-19. Retrieved 2010-04-27. https://web.archive.org/web/20100419111021/http://robotic.media.mit.edu/projects/robots/mds/overview/overview.html
Yumpu.com. "January 17, 2013 PDF Edition - Wilbraham-Hampden Times". yumpu.com. Retrieved 2021-11-05. https://www.yumpu.com/en/document/view/13298912/january-17-2013-pdf-edition-wilbraham-hampden-times
Eduard Gamonal. "PAL Robotics — advanced full-size humanoid service robots for events and research world-wide". pal-robotics.com. Archived from the original on 2012-03-09. https://web.archive.org/web/20120309190528/http://www.pal-robotics.com/robots/reem-b
Guizzo, Erico (2020-02-13). "Iran Unveils Its Most Advanced Humanoid Robot Yet". IEEE Spectrum. Retrieved 2021-11-05. https://spectrum.ieee.org/iran-surena-iv-humanoid-robot
"HRP-4C - ROBOTS: Your Guide to the World of Robotics". IEEE. Retrieved 2021-11-05. https://robotsguide.com/robots/hrp4c/
"Japanese Humanoid Robot, Kobian, Walks, Talks, Crys and Laughs (VIDEO)". The Inquisitr News. 24 June 2009. Archived from the original on 2011-11-23. http://www.inquisitr.com/27208/japanese-humanoid-robot-kobian-walks-talks-crys-and-laughs-video/
"Darwin-OP - ROBOTS: Your Guide to the World of Robotics". IEEE. Retrieved 2021-11-05. https://robotsguide.com/robots/darwin/
"Say Hello to Robonaut2, NASA's Android Space Explorer of the Future". Popular Science. 5 February 2010. Archived from the original on 2010-02-07. http://www.popsci.com/technology/article/2010-02/nasa-unveils-android-astronaut
"How to Make a Humanoid Robot Dance". 2 November 2010. Archived from the original on 2010-11-07. https://spectrum.ieee.org/how-to-make-a-robot-dance
Eduard Gamonal. "PAL Robotics — advanced full-size humanoid service robots for events and research world-wide". pal-robotics.com. Archived from the original on 2011-03-13. Retrieved 2012-02-21. https://web.archive.org/web/20110313060629/http://www.pal-robotics.com/robots/reem
"Honda Global | ASIMO". global.honda. Archived from the original on 2021-11-05. Retrieved 2021-11-05. https://web.archive.org/web/20211105085152/https://global.honda/innovation/robotics/ASIMO.html#2011
Schwarz, Max; Pastrana, Julio; Allgeuer, Philipp; Schreiber, Michael; Schueller, Sebastian; Missura, Marcell; Behnke, Sven (2014). "Humanoid TeenSize Open Platform NimbRo-OP". RoboCup 2013: Robot World Cup XVII. Lecture Notes in Computer Science. Vol. 8371. pp. 568–575. doi:10.1007/978-3-662-44468-9_51. ISBN 978-3-662-44467-2. 978-3-662-44467-2
"DLR - Institute of Robotics and Mechatronics - Toro". www.dlr.de. Retrieved 2019-06-17. https://www.dlr.de/rm/en/desktopdefault.aspx/tabid-11678/#gallery/28603
"Home". theroboticschallenge.org. Archived from the original on 2015-06-11. https://web.archive.org/web/20150611162358/http://theroboticschallenge.org/
"REEM-C - ROBOTS: Your Guide to the World of Robotics". IEEE. Retrieved 2021-11-05. https://robotsguide.com/robots/reemc/
"Meet Poppy, the open source / open hardware humanoid robot inspiring innovation in labs & classrooms ! « IEEE SCV RAS Chapter". IEEE. Retrieved 2021-11-05. https://r6.ieee.org/scv-ras/2015/01/30/poppy/
Menezes, Beryl (28 January 2015). "Meet Manav, India's first 3D-printed humanoid robot". www.livemint.com. Archived from the original on 2015-09-29. Retrieved 2015-09-30. http://www.livemint.com/Industry/rc86Iu7h3rb44087oDts1H/Meet-Manav-Indias-first-3Dprinted-humanoid-robot.html
"Pepper - ROBOTS: Your Guide to the World of Robotics". IEEE. Retrieved 2021-11-05. https://robotsguide.com/robots/pepper/
J. Zhang J, N. Magnenat Thalmann and J. Zheng, Combining Memory and Emotion With Dialog on Social Companion: A Review, Proceedings of the ACM 29th International Conference on Computer Animation and Social Agents (CASA 2016), pp. 1-9, Geneva, Switzerland, May 23–25, 2016 http://dl.acm.org/citation.cfm?id=2915952
Berger, Sarah (2015-12-31). "Humanlike, Social Robot 'Nadine' Can Feel Emotions And Has A Good Memory, Scientists Claim". International Business Times. Retrieved 2016-01-12. https://www.ibtimes.com/humanlike-social-robot-nadine-can-feel-emotions-has-good-memory-scientists-claim-2245600
Parviainen, Jaana; Coeckelbergh, Mark (September 2021). "The political choreography of the Sophia robot: beyond robot rights and citizenship to political performances for the social robotics market". AI & Society. 36 (3): 715–724. doi:10.1007/s00146-020-01104-w. https://doi.org/10.1007%2Fs00146-020-01104-w
"How did a Stanford-designed 'humanoid' discover a vase from a Louis XIV shipwreck?". montereyherald.com. Archived from the original on 21 October 2017. Retrieved 3 May 2018. https://web.archive.org/web/20171021205530/http://www.montereyherald.com/general-news/20160427/how-did-a-stanford-designed-humanoid-discover-a-vase-from-a-louis-xiv-shipwreck/3
TALOS: A new humanoid research platform targeted for industrial applications https://hal.archives-ouvertes.fr/hal-01485519/document
"TALOS Humanoid Now Available from PAL Robotics". IEEE Spectrum. 2017-03-07. Retrieved 2021-11-05. https://spectrum.ieee.org/talos-humanoid-now-available-from-pal-robotics
"Ranchi man develops humanoid robot Rashmi, Indian version of 'Sophia'". Hindustan Times. 2018-08-02. Retrieved 2020-02-21. https://www.hindustantimes.com/india-news/ranchi-man-develops-humanoid-robot-rashmi-an-indian-version-of-sophia/story-4O6D2mkMeb3tKORqNT820I.html
Korosec, Kirsten (2020-01-06). "Agility's two-legged robot Digit is for sale and Ford is the first customer". TechCrunch. Retrieved 2024-08-29. https://techcrunch.com/2020/01/05/agilitys-two-legged-robot-digit-is-for-sale-and-ford-is-the-first-customer/
"Gaganyaan mission: Meet Vyommitra, the talking human robot that Isro will send to space". 22 January 2020. https://www.indiatoday.in/science/story/gaganyaan-vyommitra-talking-humanoid-isro-space-1639077-2020-01-22
Jagran Josh (5 Feb 2021). "KV Teacher turns Innovator, Develops Social Humanoid Robot 'Shalu' that can speak 9 Indian, 38 Foreign Languages". Jagran Prakashan Limited. Retrieved 11 July 2021. https://www.jagranjosh.com/articles/kv-teacher-turns-innovator-develops-social-humanoid-robot-shalu-that-can-speak-9-indian-36-foreign-languages-1612431262-1
"The humanoid robot, Ameca, revealed at CES show". www.bbc.co.uk. 2022-08-01. Retrieved 2023-01-02. https://www.bbc.co.uk/newsround/59909789
"Optimus". www.forbes.com. 2022-10-01. Retrieved 2022-11-30. https://www.forbes.com/sites/johnkoetsier/2022/10/01/tesla-bot-optimus-everything-we-know-so-far/?sh=4408e5d517bb
Heater, Brian (2023-03-20). "Meet the new face of Agility Robotics' Digit". TechCrunch. Retrieved 2024-08-29. https://techcrunch.com/2023/03/20/meet-the-new-face-and-hands-of-agility-robotics-digit/
Edwards, Benj (2023-12-13). "Tesla unveils its latest humanoid robot, Optimus Gen 2, in demo video". Ars Technica. Retrieved 2024-06-21. https://arstechnica.com/information-technology/2023/12/teslas-latest-humanoid-robot-optimus-gen-2-can-handle-eggs-without-cracking-them/
Weatherbed, Jess (2024-04-17). "Boston Dynamics' new Atlas robot is a swiveling, shape-shifting nightmare". The Verge. Retrieved 2025-01-03. https://www.theverge.com/2024/4/17/24133145/boston-dynamics-resurrects-atlas-humanoid-robot-electric-new
Demaitre, Eugene (2024-04-17). "Boston Dynamics debuts electric version of Atlas humanoid robot". The Robot Report. Retrieved 2025-01-03. https://www.therobotreport.com/boston-dynamics-debuts-electric-version-of-atlas-humanoid-robot/
"Unitree Robotics introduces G1 Humanoid agent AI avatar | RoboticsTomorrow". roboticstomorrow.com. Retrieved 2025-01-03. https://www.roboticstomorrow.com/news/2024/05/15/unitree-robotics-introduces-g1-humanoid-agent-ai-avatar/22587
DeGeurin, Mack (2024-06-18). "These robots learned tennis and boxing after observing people". Popular Science. Retrieved 2024-06-21. https://www.popsci.com/technology/robot-boxing/
McClure, Bob (2024-06-28). "Agility's humanoid robots are now handling Spanx". New Atlas. Retrieved 2024-06-29. https://newatlas.com/robotics/agilitys-humanoid-robots-are-now-handling-spanx/
Salas, Joe (2025-02-24). "Watch: World's first front-flippin' humanoid robot". New Atlas. Retrieved 2025-02-27. https://newatlas.com/ai-humanoids/worlds-first-front-flip-humanoid-robot-engineai/
Mubin, Omar; Wadibhasme, Kewal; Jordan, Philipp; Obaid, Mohammad (31 March 2019). "Reflecting on the Presence of Science Fiction Robots in Computing Literature". ACM Transactions on Human-Robot Interaction. 8 (1): 1–25. doi:10.1145/3303706. /wiki/Doi_(identifier)
Mubin, Omar; Wadibhasme, Kewal; Jordan, Philipp; Obaid, Mohammad (31 March 2019). "Reflecting on the Presence of Science Fiction Robots in Computing Literature". ACM Transactions on Human-Robot Interaction. 8 (1): 1–25. doi:10.1145/3303706. /wiki/Doi_(identifier)
Mubin, Omar; Wadibhasme, Kewal; Jordan, Philipp; Obaid, Mohammad (31 March 2019). "Reflecting on the Presence of Science Fiction Robots in Computing Literature". ACM Transactions on Human-Robot Interaction. 8 (1): 1–25. doi:10.1145/3303706. /wiki/Doi_(identifier)
Mubin, Omar; Wadibhasme, Kewal; Jordan, Philipp; Obaid, Mohammad (31 March 2019). "Reflecting on the Presence of Science Fiction Robots in Computing Literature". ACM Transactions on Human-Robot Interaction. 8 (1): 1–25. doi:10.1145/3303706. /wiki/Doi_(identifier)
Shankar, S. (2010-10-01), Enthiran (Action, Sci-Fi, Thriller), Rajinikanth, Aishwarya Rai Bachchan, Danny Denzongpa, Sun Pictures, Utopia Films, retrieved 2024-03-04 https://www.imdb.com/title/tt1305797/
"Science Facts in Enthiran the Robot - Tamil Visitor Coloumn - Endhiran | Rajinikanth | Aishwarya Rai | Shankar | AR Rahman - Behindwoods.com". www.behindwoods.com. Retrieved 2024-03-04. https://www.behindwoods.com/features/visitors-1/endhiran-robot-22-11-10.html
Boissoneault, Lorraine. "Are Blade Runner's Replicants "Human"? Descartes and Locke Have Some Thoughts". Smithsonian Magazine. Retrieved 2021-11-05. https://www.smithsonianmag.com/arts-culture/are-blade-runners-replicants-human-descartes-and-locke-have-some-thoughts-180965097/
Ho, Chin-Chang; MacDorman, Karl F.; Pramono, Z. A. D. Dwi (2008). "Human emotion and the uncanny valley: A GLM, MDS, and Isomap analysis of robot video ratings". Proceedings of the 3rd ACM/IEEE international conference on Human robot interaction. pp. 169–176. doi:10.1145/1349822.1349845. ISBN 978-1-60558-017-3. 978-1-60558-017-3
Mara, Martina; Appel, Markus; Gnambs, Timo (January 2022). "Human-Like Robots and the Uncanny Valley: A Meta-Analysis of User Responses Based on the Godspeed Scales". Zeitschrift für Psychologie. 230 (1): 33–46. doi:10.1027/2151-2604/a000486. ISSN 2190-8370. https://doi.org/10.1027%2F2151-2604%2Fa000486