The polynomial is defined using skein relations:
where L + , L − , L 0 {\displaystyle L_{+},L_{-},L_{0}} are links formed by crossing and smoothing changes on a local region of a link diagram, as indicated in the figure.
The HOMFLY polynomial of a link L that is a split union of two links L 1 {\displaystyle L_{1}} and L 2 {\displaystyle L_{2}} is given by
See the page on skein relation for an example of a computation using such relations.
This polynomial can be obtained also using other skein relations:
The Jones polynomial, V(t), and the Alexander polynomial, Δ ( t ) {\displaystyle \Delta (t)\,} can be computed in terms of the HOMFLY polynomial (the version in α {\displaystyle \alpha } and z {\displaystyle z} variables) as follows:
Freyd, P.; Yetter, D.; Hoste, J.; Lickorish, W.B.R.; Millett, K.; Ocneanu, A. (1985). "A New Polynomial Invariant of Knots and Links". Bulletin of the American Mathematical Society. 12 (2): 239–246. doi:10.1090/S0273-0979-1985-15361-3. https://doi.org/10.1090%2FS0273-0979-1985-15361-3 ↩
Józef H. Przytycki; .Paweł Traczyk (1987). "Invariants of Links of Conway Type". Kobe J. Math. 4: 115–139. arXiv:1610.06679. /wiki/ArXiv_(identifier) ↩
Ramadevi, P.; Govindarajan, T.R.; Kaul, R.K. (1994). "Chirality of Knots 942 and 1071 and Chern-Simons Theory". Modern Physics Letters A. 09 (34): 3205–3217. arXiv:hep-th/9401095. Bibcode:1994MPLA....9.3205R. doi:10.1142/S0217732394003026. S2CID 119143024. /wiki/ArXiv_(identifier) ↩