Formally, let
X
{\displaystyle X}
be a class of graphs. If for every
n
{\displaystyle n}
-vertex graph
G
{\displaystyle G}
in
X
{\displaystyle X}
, there exists a polynomial
f
(
n
)
{\displaystyle f(n)}
such that
G
{\displaystyle G}
has
O
(
f
(
n
)
)
{\displaystyle O(f(n))}
maximal cliques, then
X
{\displaystyle X}
is said to be a class of graphs with few cliques.
Prisner, E. (1995). Graphs with Few Cliques. In Y. Alavi & A. Schwenk (Eds.), Graph theory, combinatorics, and algorithms: proceedings of the Seventh Quadrennial International Conference on the Theory and Applications of Graphs (pp. 945–956). New York, N. Y: Wiley. https://www.worldcat.org/title/30781165
Prisner, E. (1995). Graphs with Few Cliques. In Y. Alavi & A. Schwenk (Eds.), Graph theory, combinatorics, and algorithms: proceedings of the Seventh Quadrennial International Conference on the Theory and Applications of Graphs (pp. 945–956). New York, N. Y: Wiley. https://www.worldcat.org/title/30781165
Rosgen, B., & Stewart, L. (2007). Complexity results on graphs with few cliques. Discrete Mathematics & Theoretical Computer Science, Vol. 9 no. 1 (Graph and Algorithms), 387. https://doi.org/10.46298/dmtcs.387 https://doi.org/10.46298/dmtcs.387
Fox, J., Roughgarden, T., Seshadhri, C., Wei, F., & Wein, N. (2020). Finding Cliques in Social Networks: A New Distribution-Free Model. SIAM Journal on Computing, 49(2), 448–464. https://doi.org/10.1137/18M1210459 https://doi.org/10.1137/18M1210459
Prisner, E. (1995). Graphs with Few Cliques. In Y. Alavi & A. Schwenk (Eds.), Graph theory, combinatorics, and algorithms: proceedings of the Seventh Quadrennial International Conference on the Theory and Applications of Graphs (pp. 945–956). New York, N. Y: Wiley. https://www.worldcat.org/title/30781165
Graham, R. L., Knuth, D. E., & Patashnik, O. (1994). Concrete mathematics: a foundation for computer science (2nd ed.). Reading, Mass: Addison-Wesley. https://www.worldcat.org/title/29357079
Moon, J. W., & Moser, L. (1965). On cliques in graphs. Israel Journal of Mathematics, 3(1), 23–28. https://doi.org/10.1007/BF02760024 https://doi.org/10.1007/BF02760024
Pahl, P. J., & Damrath, R. (2001). Mathematical foundations of computational engineering: a handbook. Berlin ; New York: Springer. https://www.worldcat.org/title/47208580
Gavril, F. (1974). The intersection graphs of subtrees in trees are exactly the chordal graphs. Journal of Combinatorial Theory, Series B, 16(1), 47–56. https://doi.org/10.1016/0095-8956(74)90094-X https://doi.org/10.1016/0095-8956(74)90094-X
Wood, D. R. (2007). On the Maximum Number of Cliques in a Graph. Graphs and Combinatorics, 23(3), 337–352. https://doi.org/10.1007/s00373-007-0738-8 https://doi.org/10.1007/s00373-007-0738-8
Spinrad, J. P. (2003). Intersection and containment representations. In Efficient graph representations (pp. 31–53). Providence, R.I: American Mathematical Society. https://www.worldcat.org/title/51848305
Eppstein, D., Löffler, M., & Strash, D. (2010). Listing All Maximal Cliques in Sparse Graphs in Near-Optimal Time. In O. Cheong, K.-Y. Chwa, & K. Park (Eds.), Algorithms and Computation (Vol. 6506, pp. 403–414). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-17517-6_36 https://doi.org/10.1007/978-3-642-17517-6_36
Brimkov, V. E., Junosza-Szaniawski, K., Kafer, S., Kratochvíl, J., Pergel, M., Rzążewski, P., et al. (2018). Homothetic polygons and beyond: Maximal cliques in intersection graphs. Discrete Applied Mathematics, 247, 263–277. https://doi.org/10.1016/j.dam.2018.03.046 https://doi.org/10.1016/j.dam.2018.03.046