In 1979, Bruce Cunningham and his colleagues discovered the first instance of a circularly permuted protein in nature. After determining the peptide sequence of the lectin protein favin, they noticed its similarity to a known protein – concanavalin A – except that the ends were circularly permuted. Later work confirmed the circular permutation between the pair and showed that concanavalin A is permuted post-translationally through cleavage and an unusual protein ligation.
After the discovery of a natural circularly permuted protein, researchers looked for a way to emulate this process. In 1983, David Goldenberg and Thomas Creighton were able to create a circularly permuted version of a protein by chemically ligating the termini to create a cyclic protein, then introducing new termini elsewhere using trypsin. In 1989, Karolin Luger and her colleagues introduced a genetic method for making circular permutations by carefully fragmenting and ligating DNA. This method allowed for permutations to be introduced at arbitrary sites.
Despite the early discovery of post-translational circular permutations and the suggestion of a possible genetic mechanism for evolving circular permutants, it was not until 1995 that the first circularly permuted pair of genes were discovered. Saposins are a class of proteins involved in sphingolipid catabolism and antigen presentation of lipids in humans. Chris Ponting and Robert Russell identified a circularly permuted version of a saposin inserted into plant aspartic proteinase, which they nicknamed swaposin. Saposin and swaposin were the first known case of two natural genes related by a circular permutation.
Hundreds of examples of protein pairs related by a circular permutation were subsequently discovered in nature or produced in the laboratory. As of February 2012, the Circular Permutation Database contains 2,238 circularly permuted protein pairs with known structures, and many more are known without structures. The CyBase database collects proteins that are cyclic, some of which are permuted variants of cyclic wild-type proteins. SISYPHUS is a database that contains a collection of hand-curated manual alignments of proteins with non-trivial relationships, several of which have circular permutations.
There are two main models that are currently being used to explain the evolution of circularly permuted proteins: permutation by duplication and fission and fusion. The two models have compelling examples supporting them, but the relative contribution of each model in evolution is still under debate. Other, less common, mechanisms have been proposed, such as "cut and paste" or "exon shuffling".
The earliest model proposed for the evolution of circular permutations is the permutation by duplication mechanism. In this model, a precursor gene first undergoes a duplication and fusion to form a large tandem repeat. Next, start and stop codons are introduced at corresponding locations in the duplicated gene, removing redundant sections of the protein.
One surprising prediction of the permutation by duplication mechanism is that intermediate permutations can occur. For instance, the duplicated version of the protein should still be functional, since otherwise evolution would quickly select against such proteins. Likewise, partially duplicated intermediates where only one terminus was truncated should be functional. Such intermediates have been extensively documented in protein families such as DNA methyltransferases.
An example for permutation by duplication is the relationship between saposin and swaposin. Saposins are highly conserved glycoproteins, approximately 80 amino acid residues long and forming a four alpha helical structure. They have a nearly identical placement of cysteine residues and glycosylation sites. The cDNA sequence that codes for saposin is called prosaposin. It is a precursor for four cleavage products, the saposins A, B, C, and D. The four saposin domains most likely arose from two tandem duplications of an ancestral gene. This repeat suggests a mechanism for the evolution of the relationship with the plant-specific insert (PSI). The PSI is a domain exclusively found in plants, consisting of approximately 100 residues and found in plant aspartic proteases. It belongs to the saposin-like protein family (SAPLIP) and has the N- and C- termini "swapped", such that the order of helices is 3-4-1-2 compared with saposin, thus leading to the name "swaposin".
Another model for the evolution of circular permutations is the fission and fusion model. The process starts with two partial proteins. These may represent two independent polypeptides (such as two parts of a heterodimer), or may have originally been halves of a single protein that underwent a fission event to become two polypeptides.
The two proteins can later fuse together to form a single polypeptide. Regardless of which protein comes first, this fusion protein may show similar function. Thus, if a fusion between two proteins occurs twice in evolution (either between paralogues within the same species or between orthologues in different species) but in a different order, the resulting fusion proteins will be related by a circular permutation.
Evidence for a particular protein having evolved by a fission and fusion mechanism can be provided by observing the halves of the permutation as independent polypeptides in related species, or by demonstrating experimentally that the two halves can function as separate polypeptides.
The two evolutionary models mentioned above describe ways in which genes may be circularly permuted, resulting in a circularly permuted mRNA after transcription. Proteins can also be circularly permuted via post-translational modification, without permuting the underlying gene. Circular permutations can happen spontaneously through autocatalysis, as in the case of concanavalin A. Alternately, permutation may require restriction enzymes and ligases.
Many proteins have their termini located close together in 3D space. Because of this, it is often possible to design circular permutations of proteins. Today, circular permutations are generated routinely in the lab using standard genetics techniques. Although some permutation sites prevent the protein from folding correctly, many permutants have been created with nearly identical structure and function to the original protein.
The motivation for creating a circular permutant of a protein can vary. Scientists may want to improve some property of the protein, such as:
Alternately, scientists may be interested in properties of the original protein, such as:
The algorithms are classified according to the type of input they require. Sequence-based algorithms require only the sequence of two proteins in order to create an alignment. Sequence methods are generally fast and suitable for searching whole genomes for circularly permuted pairs of proteins. Structure-based methods require 3D structures of both proteins being considered. They are often slower than sequence-based methods, but are able to detect circular permutations between distantly related proteins with low sequence similarity. Some structural methods are topology independent, meaning that they are also able to detect more complex rearrangements than circular permutation.
Cunningham BA, Hemperly JJ, Hopp TP, Edelman GM (July 1979). "Favin versus concanavalin A: Circularly permuted amino acid sequences". Proceedings of the National Academy of Sciences of the United States of America. 76 (7): 3218–22. Bibcode:1979PNAS...76.3218C. doi:10.1073/pnas.76.7.3218. PMC 383795. PMID 16592676. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC383795
Einspahr H, Parks EH, Suguna K, Subramanian E, Suddath FL (December 1986). "The crystal structure of pea lectin at 3.0-A resolution". The Journal of Biological Chemistry. 261 (35): 16518–27. doi:10.1016/S0021-9258(18)66597-4. PMID 3782132. https://doi.org/10.1016%2FS0021-9258%2818%2966597-4
Carrington DM, Auffret A, Hanke DE (1985). "Polypeptide ligation occurs during post-translational modification of concanavalin A". Nature. 313 (5997): 64–7. Bibcode:1985Natur.313...64C. doi:10.1038/313064a0. PMID 3965973. S2CID 4359482. /wiki/Bibcode_(identifier)
Bowles DJ, Pappin DJ (February 1988). "Traffic and assembly of concanavalin A". Trends in Biochemical Sciences. 13 (2): 60–4. doi:10.1016/0968-0004(88)90030-8. PMID 3070848. /wiki/Doi_(identifier)
Goldenberg DP, Creighton TE (April 1983). "Circular and circularly permuted forms of bovine pancreatic trypsin inhibitor". Journal of Molecular Biology. 165 (2): 407–13. doi:10.1016/S0022-2836(83)80265-4. PMID 6188846. /wiki/Doi_(identifier)
Luger K, Hommel U, Herold M, Hofsteenge J, Kirschner K (January 1989). "Correct folding of circularly permuted variants of a beta alpha barrel enzyme in vivo". Science. 243 (4888): 206–10. Bibcode:1989Sci...243..206L. doi:10.1126/science.2643160. PMID 2643160. /wiki/Bibcode_(identifier)
Luger K, Hommel U, Herold M, Hofsteenge J, Kirschner K (January 1989). "Correct folding of circularly permuted variants of a beta alpha barrel enzyme in vivo". Science. 243 (4888): 206–10. Bibcode:1989Sci...243..206L. doi:10.1126/science.2643160. PMID 2643160. /wiki/Bibcode_(identifier)
Ponting CP, Russell RB (May 1995). "Swaposins: circular permutations within genes encoding saposin homologues". Trends in Biochemical Sciences. 20 (5): 179–80. doi:10.1016/S0968-0004(00)89003-9. PMID 7610480. /wiki/Doi_(identifier)
Ponting CP, Russell RB (May 1995). "Swaposins: circular permutations within genes encoding saposin homologues". Trends in Biochemical Sciences. 20 (5): 179–80. doi:10.1016/S0968-0004(00)89003-9. PMID 7610480. /wiki/Doi_(identifier)
Lo WC, Lee CC, Lee CY, Lyu PC. "Circular Permutation Database". Institute of Bioinformatics and Structural Biology, National Tsing Hua University. Retrieved 16 February 2012. http://sarst.life.nthu.edu.tw/cpdb/
Lo WC, Lee CC, Lee CY, Lyu PC (January 2009). "CPDB: a database of circular permutation in proteins". Nucleic Acids Research. 37 (Database issue): D328–32. doi:10.1093/nar/gkn679. PMC 2686539. PMID 18842637. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2686539
Kaas Q, Craik DJ (2010). "Analysis and classification of circular proteins in CyBase". Biopolymers. 94 (5): 584–91. doi:10.1002/bip.21424. PMID 20564021. https://doi.org/10.1002%2Fbip.21424
Andreeva A, Prlić A, Hubbard TJ, Murzin AG (January 2007). "SISYPHUS--structural alignments for proteins with non-trivial relationships". Nucleic Acids Research. 35 (Database issue): D253–9. doi:10.1093/nar/gkl746. PMC 1635320. PMID 17068077. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1635320
Weiner J, Bornberg-Bauer E (April 2006). "Evolution of circular permutations in multidomain proteins". Molecular Biology and Evolution. 23 (4): 734–43. doi:10.1093/molbev/msj091. PMID 16431849. https://doi.org/10.1093%2Fmolbev%2Fmsj091
Bujnicki JM (March 2002). "Sequence permutations in the molecular evolution of DNA methyltransferases". BMC Evolutionary Biology. 2 (1): 3. doi:10.1186/1471-2148-2-3. PMC 102321. PMID 11914127. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC102321
Jung J, Lee B (September 2001). "Circularly permuted proteins in the protein structure database". Protein Science. 10 (9): 1881–6. doi:10.1110/ps.05801. PMC 2253204. PMID 11514678. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2253204
Cunningham BA, Hemperly JJ, Hopp TP, Edelman GM (July 1979). "Favin versus concanavalin A: Circularly permuted amino acid sequences". Proceedings of the National Academy of Sciences of the United States of America. 76 (7): 3218–22. Bibcode:1979PNAS...76.3218C. doi:10.1073/pnas.76.7.3218. PMC 383795. PMID 16592676. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC383795
Jeltsch A (July 1999). "Circular permutations in the molecular evolution of DNA methyltransferases". Journal of Molecular Evolution. 49 (1): 161–4. Bibcode:1999JMolE..49..161J. doi:10.1007/pl00006529. PMID 10368444. S2CID 24116226. /wiki/Bibcode_(identifier)
Hazkani-Covo E, Altman N, Horowitz M, Graur D (January 2002). "The evolutionary history of prosaposin: two successive tandem-duplication events gave rise to the four saposin domains in vertebrates". Journal of Molecular Evolution. 54 (1): 30–4. Bibcode:2002JMolE..54...30H. doi:10.1007/s00239-001-0014-0. PMID 11734895. S2CID 7402721. /wiki/Bibcode_(identifier)
Guruprasad K, Törmäkangas K, Kervinen J, Blundell TL (September 1994). "Comparative modelling of barley-grain aspartic proteinase: a structural rationale for observed hydrolytic specificity". FEBS Letters. 352 (2): 131–6. Bibcode:1994FEBSL.352..131G. doi:10.1016/0014-5793(94)00935-X. PMID 7925961. S2CID 32524531. https://doi.org/10.1016%2F0014-5793%2894%2900935-X
Ponting CP, Russell RB (May 1995). "Swaposins: circular permutations within genes encoding saposin homologues". Trends in Biochemical Sciences. 20 (5): 179–80. doi:10.1016/S0968-0004(00)89003-9. PMID 7610480. /wiki/Doi_(identifier)
Bruhn H (July 2005). "A short guided tour through functional and structural features of saposin-like proteins". The Biochemical Journal. 389 (Pt 2): 249–57. doi:10.1042/BJ20050051. PMC 1175101. PMID 15992358. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1175101
Lee J, Blaber M (January 2011). "Experimental support for the evolution of symmetric protein architecture from a simple peptide motif". Proceedings of the National Academy of Sciences of the United States of America. 108 (1): 126–30. Bibcode:2011PNAS..108..126L. doi:10.1073/pnas.1015032108. PMC 3017207. PMID 21173271. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3017207
Hatefi Y, Yamaguchi M (March 1996). "Nicotinamide nucleotide transhydrogenase: a model for utilization of substrate binding energy for proton translocation". FASEB Journal. 10 (4): 444–52. doi:10.1096/fasebj.10.4.8647343. PMID 8647343. S2CID 21898930. https://doi.org/10.1096%2Ffasebj.10.4.8647343
Weiner J, Bornberg-Bauer E (April 2006). "Evolution of circular permutations in multidomain proteins". Molecular Biology and Evolution. 23 (4): 734–43. doi:10.1093/molbev/msj091. PMID 16431849. https://doi.org/10.1093%2Fmolbev%2Fmsj091
Bowles DJ, Pappin DJ (February 1988). "Traffic and assembly of concanavalin A". Trends in Biochemical Sciences. 13 (2): 60–4. doi:10.1016/0968-0004(88)90030-8. PMID 3070848. /wiki/Doi_(identifier)
Goldenberg DP, Creighton TE (April 1983). "Circular and circularly permuted forms of bovine pancreatic trypsin inhibitor". Journal of Molecular Biology. 165 (2): 407–13. doi:10.1016/S0022-2836(83)80265-4. PMID 6188846. /wiki/Doi_(identifier)
Thornton JM, Sibanda BL (June 1983). "Amino and carboxy-terminal regions in globular proteins". Journal of Molecular Biology. 167 (2): 443–60. doi:10.1016/S0022-2836(83)80344-1. PMID 6864804. /wiki/Doi_(identifier)
Yu Y, Lutz S (January 2011). "Circular permutation: a different way to engineer enzyme structure and function". Trends in Biotechnology. 29 (1): 18–25. doi:10.1016/j.tibtech.2010.10.004. PMID 21087800. /wiki/Doi_(identifier)
Luger K, Hommel U, Herold M, Hofsteenge J, Kirschner K (January 1989). "Correct folding of circularly permuted variants of a beta alpha barrel enzyme in vivo". Science. 243 (4888): 206–10. Bibcode:1989Sci...243..206L. doi:10.1126/science.2643160. PMID 2643160. /wiki/Bibcode_(identifier)
Whitehead TA, Bergeron LM, Clark DS (October 2009). "Tying up the loose ends: circular permutation decreases the proteolytic susceptibility of recombinant proteins". Protein Engineering, Design & Selection. 22 (10): 607–13. doi:10.1093/protein/gzp034. PMID 19622546. /wiki/Douglas_S._Clark
Cheltsov AV, Barber MJ, Ferreira GC (June 2001). "Circular permutation of 5-aminolevulinate synthase. Mapping the polypeptide chain to its function". The Journal of Biological Chemistry. 276 (22): 19141–9. doi:10.1074/jbc.M100329200. PMC 4547487. PMID 11279050. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4547487
Qian Z, Lutz S (October 2005). "Improving the catalytic activity of Candida antarctica lipase B by circular permutation". Journal of the American Chemical Society. 127 (39): 13466–7. doi:10.1021/ja053932h. PMID 16190688. (primary source) /wiki/Doi_(identifier)
Topell S, Hennecke J, Glockshuber R (August 1999). "Circularly permuted variants of the green fluorescent protein". FEBS Letters. 457 (2): 283–9. Bibcode:1999FEBSL.457..283T. doi:10.1016/S0014-5793(99)01044-3. PMID 10471794. S2CID 43085373. (primary source) /wiki/Bibcode_(identifier)
Viguera AR, Serrano L, Wilmanns M (October 1996). "Different folding transition states may result in the same native structure". Nature Structural Biology. 3 (10): 874–80. doi:10.1038/nsb1096-874. PMID 8836105. S2CID 11542397. (primary source) /wiki/Doi_(identifier)
Capraro DT, Roy M, Onuchic JN, Jennings PA (September 2008). "Backtracking on the folding landscape of the beta-trefoil protein interleukin-1beta?". Proceedings of the National Academy of Sciences of the United States of America. 105 (39): 14844–8. Bibcode:2008PNAS..10514844C. doi:10.1073/pnas.0807812105. PMC 2567455. PMID 18806223. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2567455
Zhang P, Schachman HK (July 1996). "In vivo formation of allosteric aspartate transcarbamoylase containing circularly permuted catalytic polypeptide chains: implications for protein folding and assembly". Protein Science. 5 (7): 1290–300. doi:10.1002/pro.5560050708. PMC 2143468. PMID 8819162. (primary source) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2143468
Huang YM, Nayak S, Bystroff C (November 2011). "Quantitative in vivo solubility and reconstitution of truncated circular permutants of green fluorescent protein". Protein Science. 20 (11): 1775–80. doi:10.1002/pro.735. PMC 3267941. PMID 21910151. (primary source) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3267941
Beernink PT, Yang YR, Graf R, King DS, Shah SS, Schachman HK (March 2001). "Random circular permutation leading to chain disruption within and near alpha helices in the catalytic chains of aspartate transcarbamoylase: effects on assembly, stability, and function". Protein Science. 10 (3): 528–37. doi:10.1110/ps.39001. PMC 2374132. PMID 11344321. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2374132
Baird GS, Zacharias DA, Tsien RY (September 1999). "Circular permutation and receptor insertion within green fluorescent proteins". Proceedings of the National Academy of Sciences of the United States of America. 96 (20): 11241–6. Bibcode:1999PNAS...9611241B. doi:10.1073/pnas.96.20.11241. PMC 18018. PMID 10500161. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC18018
Cheltsov AV, Barber MJ, Ferreira GC (June 2001). "Circular permutation of 5-aminolevulinate synthase. Mapping the polypeptide chain to its function". The Journal of Biological Chemistry. 276 (22): 19141–9. doi:10.1074/jbc.M100329200. PMC 4547487. PMID 11279050. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4547487
Turner NJ (August 2009). "Directed evolution drives the next generation of biocatalysts". Nature Chemical Biology. 5 (8): 567–73. doi:10.1038/nchembio.203. PMID 19620998. /wiki/Doi_(identifier)
Baird GS, Zacharias DA, Tsien RY (September 1999). "Circular permutation and receptor insertion within green fluorescent proteins". Proceedings of the National Academy of Sciences of the United States of America. 96 (20): 11241–6. Bibcode:1999PNAS...9611241B. doi:10.1073/pnas.96.20.11241. PMC 18018. PMID 10500161. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC18018
Weiner J, Thomas G, Bornberg-Bauer E (April 2005). "Rapid motif-based prediction of circular permutations in multi-domain proteins". Bioinformatics. 21 (7): 932–7. doi:10.1093/bioinformatics/bti085. PMID 15788783. https://doi.org/10.1093%2Fbioinformatics%2Fbti085
Weiner J, Thomas G, Bornberg-Bauer E (April 2005). "Rapid motif-based prediction of circular permutations in multi-domain proteins". Bioinformatics. 21 (7): 932–7. doi:10.1093/bioinformatics/bti085. PMID 15788783. https://doi.org/10.1093%2Fbioinformatics%2Fbti085
Weiner J, Thomas G, Bornberg-Bauer E (April 2005). "Rapid motif-based prediction of circular permutations in multi-domain proteins". Bioinformatics. 21 (7): 932–7. doi:10.1093/bioinformatics/bti085. PMID 15788783. https://doi.org/10.1093%2Fbioinformatics%2Fbti085
Bachar O, Fischer D, Nussinov R, Wolfson H (April 1993). "A computer vision based technique for 3-D sequence-independent structural comparison of proteins". Protein Engineering. 6 (3): 279–88. doi:10.1093/protein/6.3.279. PMID 8506262. /wiki/Doi_(identifier)
Uliel S, Fliess A, Amir A, Unger R (November 1999). "A simple algorithm for detecting circular permutations in proteins". Bioinformatics. 15 (11): 930–6. doi:10.1093/bioinformatics/15.11.930. PMID 10743559. https://doi.org/10.1093%2Fbioinformatics%2F15.11.930
Uliel S, Fliess A, Amir A, Unger R (November 1999). "A simple algorithm for detecting circular permutations in proteins". Bioinformatics. 15 (11): 930–6. doi:10.1093/bioinformatics/15.11.930. PMID 10743559. https://doi.org/10.1093%2Fbioinformatics%2F15.11.930
Prlic A, Bliven S, Rose PW, Bluhm WF, Bizon C, Godzik A, Bourne PE (December 2010). "Pre-calculated protein structure alignments at the RCSB PDB website". Bioinformatics. 26 (23): 2983–5. doi:10.1093/bioinformatics/btq572. PMC 3003546. PMID 20937596. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3003546
Prlic A, Bliven S, Rose PW, Bluhm WF, Bizon C, Godzik A, Bourne PE (December 2010). "Pre-calculated protein structure alignments at the RCSB PDB website". Bioinformatics. 26 (23): 2983–5. doi:10.1093/bioinformatics/btq572. PMC 3003546. PMID 20937596. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3003546
Shatsky M, Nussinov R, Wolfson HJ (July 2004). "A method for simultaneous alignment of multiple protein structures". Proteins. 56 (1): 143–56. doi:10.1002/prot.10628. PMID 15162494. S2CID 14665486. /wiki/Doi_(identifier)
Zuker M (September 1991). "Suboptimal sequence alignment in molecular biology. Alignment with error analysis". Journal of Molecular Biology. 221 (2): 403–20. doi:10.1016/0022-2836(91)80062-Y. PMID 1920426. /wiki/Doi_(identifier)
Bachar O, Fischer D, Nussinov R, Wolfson H (April 1993). "A computer vision based technique for 3-D sequence-independent structural comparison of proteins". Protein Engineering. 6 (3): 279–88. doi:10.1093/protein/6.3.279. PMID 8506262. /wiki/Doi_(identifier)
Uliel S, Fliess A, Amir A, Unger R (November 1999). "A simple algorithm for detecting circular permutations in proteins". Bioinformatics. 15 (11): 930–6. doi:10.1093/bioinformatics/15.11.930. PMID 10743559. https://doi.org/10.1093%2Fbioinformatics%2F15.11.930
Jung J, Lee B (September 2001). "Circularly permuted proteins in the protein structure database". Protein Science. 10 (9): 1881–6. doi:10.1110/ps.05801. PMC 2253204. PMID 11514678. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2253204
Shatsky M, Nussinov R, Wolfson HJ (July 2004). "A method for simultaneous alignment of multiple protein structures". Proteins. 56 (1): 143–56. doi:10.1002/prot.10628. PMID 15162494. S2CID 14665486. /wiki/Doi_(identifier)
Weiner J, Thomas G, Bornberg-Bauer E (April 2005). "Rapid motif-based prediction of circular permutations in multi-domain proteins". Bioinformatics. 21 (7): 932–7. doi:10.1093/bioinformatics/bti085. PMID 15788783. https://doi.org/10.1093%2Fbioinformatics%2Fbti085
Lo WC, Lyu PC (January 2008). "CPSARST: an efficient circular permutation search tool applied to the detection of novel protein structural relationships". Genome Biology. 9 (1): R11. doi:10.1186/gb-2008-9-1-r11. PMC 2395249. PMID 18201387. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2395249
Schmidt-Goenner T, Guerler A, Kolbeck B, Knapp EW (May 2010). "Circular permuted proteins in the universe of protein folds". Proteins. 78 (7): 1618–30. doi:10.1002/prot.22678. PMID 20112421. S2CID 20673981. /wiki/Doi_(identifier)
Wang L, Wu LY, Wang Y, Zhang XS, Chen L (July 2010). "SANA: an algorithm for sequential and non-sequential protein structure alignment". Amino Acids. 39 (2): 417–25. doi:10.1007/s00726-009-0457-y. PMID 20127263. S2CID 2292831. /wiki/Doi_(identifier)
Bliven SE, Bourne PE, Prlić A (April 2015). "Detection of circular permutations within protein structures using CE-CP". Bioinformatics. 31 (8): 1316–8. doi:10.1093/bioinformatics/btu823. PMC 4393524. PMID 25505094. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4393524
Sippl MJ, Wiederstein M (April 2012). "Detection of spatial correlations in protein structures and molecular complexes". Structure. 20 (4): 718–28. doi:10.1016/j.str.2012.01.024. PMC 3320710. PMID 22483118. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3320710