The Lerch transcendent is related to and generalizes various special functions.
The Lerch zeta function is given by:
The Hurwitz zeta function is the special case3
The polylogarithm is another special case:4
The Riemann zeta function is a special case of both of the above:5
The Dirichlet eta function:6
The Dirichlet beta function:7
The Legendre chi function:8
The inverse tangent integral:9
The polygamma functions for positive integers n:1011
The Clausen function:12
The Lerch transcendent has an integral representation:
The proof is based on using the integral definition of the gamma function to write
and then interchanging the sum and integral. The resulting integral representation converges for z ∈ C ∖ [ 1 , ∞ ) , {\displaystyle z\in \mathbb {C} \setminus [1,\infty ),} Re(s) > 0, and Re(a) > 0. This analytically continues Φ ( z , s , a ) {\displaystyle \Phi (z,s,a)} to z outside the unit disk. The integral formula also holds if z = 1, Re(s) > 1, and Re(a) > 0; see Hurwitz zeta function.1314
A contour integral representation is given by
where C is a Hankel contour counterclockwise around the positive real axis, not enclosing any of the points t = log ( z ) + 2 k π i {\displaystyle t=\log(z)+2k\pi i} (for integer k) which are poles of the integrand. The integral assumes Re(a) > 0.15
A Hermite-like integral representation is given by
for
and
Similar representations include
holding for positive z (and more generally wherever the integrals converge). Furthermore,
The last formula is also known as Lipschitz formula.
For λ rational, the summand is a root of unity, and thus L ( λ , s , α ) {\displaystyle L(\lambda ,s,\alpha )} may be expressed as a finite sum over the Hurwitz zeta function. Suppose λ = p q {\textstyle \lambda ={\frac {p}{q}}} with p , q ∈ Z {\displaystyle p,q\in \mathbb {Z} } and q > 0 {\displaystyle q>0} . Then z = ω = e 2 π i p q {\displaystyle z=\omega =e^{2\pi i{\frac {p}{q}}}} and ω q = 1 {\displaystyle \omega ^{q}=1} .
Various identities include:
A series representation for the Lerch transcendent is given by
(Note that ( n k ) {\displaystyle {\tbinom {n}{k}}} is a binomial coefficient.)
The series is valid for all s, and for complex z with Re(z)<1/2. Note a general resemblance to a similar series representation for the Hurwitz zeta function.16
A Taylor series in the first parameter was given by Arthur Erdélyi. It may be written as the following series, which is valid for17
If n is a positive integer, then
where ψ ( n ) {\displaystyle \psi (n)} is the digamma function.
A Taylor series in the third variable is given by
where ( s ) k {\displaystyle (s)_{k}} is the Pochhammer symbol.
Series at a = −n is given by
A special case for n = 0 has the following series
where Li s ( z ) {\displaystyle \operatorname {Li} _{s}(z)} is the polylogarithm.
An asymptotic series for s → − ∞ {\displaystyle s\rightarrow -\infty }
for | a | < 1 ; ℜ ( s ) < 0 ; z ∉ ( − ∞ , 0 ) {\displaystyle |a|<1;\Re (s)<0;z\notin (-\infty ,0)} and
for | a | < 1 ; ℜ ( s ) < 0 ; z ∉ ( 0 , ∞ ) . {\displaystyle |a|<1;\Re (s)<0;z\notin (0,\infty ).}
An asymptotic series in the incomplete gamma function
for | a | < 1 ; ℜ ( s ) < 0. {\displaystyle |a|<1;\Re (s)<0.}
The representation as a generalized hypergeometric function is18
The polylogarithm function L i n ( z ) {\displaystyle \mathrm {Li} _{n}(z)} is defined as
Let
For | A r g ( a ) | < π , s ∈ C {\displaystyle |\mathrm {Arg} (a)|<\pi ,s\in \mathbb {C} } and z ∈ Ω a {\displaystyle z\in \Omega _{a}} , an asymptotic expansion of Φ ( z , s , a ) {\displaystyle \Phi (z,s,a)} for large a {\displaystyle a} and fixed s {\displaystyle s} and z {\displaystyle z} is given by
for N ∈ N {\displaystyle N\in \mathbb {N} } , where ( s ) n = s ( s + 1 ) ⋯ ( s + n − 1 ) {\displaystyle (s)_{n}=s(s+1)\cdots (s+n-1)} is the Pochhammer symbol.19
Let C n ( z , a ) {\displaystyle C_{n}(z,a)} be its Taylor coefficients at x = 0 {\displaystyle x=0} . Then for fixed N ∈ N , ℜ a > 1 {\displaystyle N\in \mathbb {N} ,\Re a>1} and ℜ s > 0 {\displaystyle \Re s>0} ,
as ℜ a → ∞ {\displaystyle \Re a\to \infty } .20
The Lerch transcendent is implemented as LerchPhi in Maple and Mathematica, and as lerchphi in mpmath and SymPy.
Lerch, Mathias (1887), "Note sur la fonction K ( w , x , s ) = ∑ k = 0 ∞ e 2 k π i x ( w + k ) s {\displaystyle \scriptstyle {\mathfrak {K}}(w,x,s)=\sum _{k=0}^{\infty }{e^{2k\pi ix} \over (w+k)^{s}}} ", Acta Mathematica (in French), 11 (1–4): 19–24, doi:10.1007/BF02612318, JFM 19.0438.01, MR 1554747, S2CID 121885446 /wiki/Mathias_Lerch ↩
Guillera & Sondow 2008. - Guillera, Jesus; Sondow, Jonathan (2008), "Double integrals and infinite products for some classical constants via analytic continuations of Lerch's transcendent", The Ramanujan Journal, 16 (3): 247–270, arXiv:math.NT/0506319, doi:10.1007/s11139-007-9102-0, MR 2429900, S2CID 119131640 https://arxiv.org/abs/math.NT/0506319 ↩
Guillera & Sondow 2008, p. 248–249 - Guillera, Jesus; Sondow, Jonathan (2008), "Double integrals and infinite products for some classical constants via analytic continuations of Lerch's transcendent", The Ramanujan Journal, 16 (3): 247–270, arXiv:math.NT/0506319, doi:10.1007/s11139-007-9102-0, MR 2429900, S2CID 119131640 https://arxiv.org/abs/math.NT/0506319 ↩
Weisstein, Eric W. "Inverse Tangent Integral". mathworld.wolfram.com. Retrieved 2024-10-13. https://mathworld.wolfram.com/InverseTangentIntegral.html ↩
The polygamma function has the series representation ψ ( m ) ( z ) = ( − 1 ) m + 1 m ! ∑ k = 0 ∞ 1 ( z + k ) m + 1 {\displaystyle \psi ^{(m)}(z)=(-1)^{m+1}\,m!\sum _{k=0}^{\infty }{\frac {1}{(z+k)^{m+1}}}} which holds for integer values of m > 0 and any complex z not equal to a negative integer. ↩
Weisstein, Eric W. "Polygamma Function". mathworld.wolfram.com. Retrieved 2024-10-14. https://mathworld.wolfram.com/PolygammaFunction.html ↩
Weisstein, Eric W. "Clausen Function". mathworld.wolfram.com. Retrieved 2024-10-14. https://mathworld.wolfram.com/ClausenFunction.html ↩
Bateman & Erdélyi 1953, p. 27 - Bateman, H.; Erdélyi, A. (1953), Higher Transcendental Functions, Vol. I (PDF), New York: McGraw-Hill http://apps.nrbook.com/bateman/Vol1.pdf ↩
Guillera & Sondow 2008, Lemma 2.1 and 2.2 - Guillera, Jesus; Sondow, Jonathan (2008), "Double integrals and infinite products for some classical constants via analytic continuations of Lerch's transcendent", The Ramanujan Journal, 16 (3): 247–270, arXiv:math.NT/0506319, doi:10.1007/s11139-007-9102-0, MR 2429900, S2CID 119131640 https://arxiv.org/abs/math.NT/0506319 ↩
Bateman & Erdélyi 1953, p. 28 - Bateman, H.; Erdélyi, A. (1953), Higher Transcendental Functions, Vol. I (PDF), New York: McGraw-Hill http://apps.nrbook.com/bateman/Vol1.pdf ↩
"The Analytic Continuation of the Lerch Transcendent and the Riemann Zeta Function". 27 April 2020. Retrieved 28 April 2020. https://www.physicsforums.com/insights/the-analytic-continuation-of-the-lerch-and-the-zeta-functions/ ↩
B. R. Johnson (1974). "Generalized Lerch zeta function". Pacific J. Math. 53 (1): 189–193. doi:10.2140/pjm.1974.53.189. https://doi.org/10.2140%2Fpjm.1974.53.189 ↩
Gottschalk, J. E.; Maslen, E. N. (1988). "Reduction formulae for generalized hypergeometric functions of one variable". J. Phys. A. 21 (9): 1983–1998. Bibcode:1988JPhA...21.1983G. doi:10.1088/0305-4470/21/9/015. /wiki/Hypergeometric_function ↩
Ferreira, Chelo; López, José L. (October 2004). "Asymptotic expansions of the Hurwitz–Lerch zeta function". Journal of Mathematical Analysis and Applications. 298 (1): 210–224. doi:10.1016/j.jmaa.2004.05.040. https://doi.org/10.1016%2Fj.jmaa.2004.05.040 ↩
Cai, Xing Shi; López, José L. (10 June 2019). "A note on the asymptotic expansion of the Lerch's transcendent". Integral Transforms and Special Functions. 30 (10): 844–855. arXiv:1806.01122. doi:10.1080/10652469.2019.1627530. S2CID 119619877. /wiki/ArXiv_(identifier) ↩