Bisphosphonates were originally synthesized in the 19th century and used in industry for their antiscaling and anticorrosive properties. In the late 1960s their potential to treat diseases related to the metabolism of the bones became evident. The first generation of bisphosphonates included etidronic acid and clodronic acid which were introduced in the 1970s and 1980s. They were the first bisphosphonate drugs to be used successfully in the clinic. They have since then been developed further with the intention to make them more potent, enhance their distribution inside the bone and extend the duration of action. This has made it possible to give zoledronate, the most recent bisphosphonate drug to be placed on the market, in a single annual dose by intravenous infusion.
The original bisphosphonates (first generation) were simple molecules with small groups of single atoms or alkyl chains in position R1 and R2. They only had a rather weak inhibiting effect on bone resorption. The inclusion of an amino group marked the beginning of the second generation of bisphosphonates with higher potency. The first was pamidronate and similar analogues followed where the position of the nitrogen in the side chain was the key to a more potent drug. Later it became apparent that the nitrogen does not necessarily have to be connected to an alkyl chain but instead using a heterocyclic group. A few such drugs have been developed and placed on the market where zoledronate is the most notable one. Minodronic acid is even more potent and has been placed on the market in Japan. Their potency is such that it is effective even in picomolar concentration.
Further development has not resulted in the placing on the market of compounds in equal potency. Arylalkyl substitutes of pamidronate are among the most recent bisphosphonates to be used clinically where the hydroxyl group in position R2 has been omitted to ensure stability.
Recent research in this area has opened up an opportunity to develop new bisphosphonate drug therapies.
GGPS has since been successfully inhibited by a novel bisphosphonate compound with a triazole group within R2 and a methyl group in R1. This may become useful in therapies against malignancies like multiple myeloma.
The common function which applies to all bisphosphonate drugs is a physicochemical interaction with the bone mineral to prevent the physical resorption of the bone by the osteoclasts. This is especially relevant at sites where bone remodelling is most active. The bisphosphonates have an intrinsic affinity for the calcium ions (hydroxyapatite) of the bone mineral just as the endogenous pyrophosphates. The difference lies in the non-hydrolysable carbon-phosphorus bond of the bisphosphonates which prevents their metabolism and at the same time ensure an effective absorption from the gastrointestinal tract.
The primary inhibiting action of the first generation of bisphosphonates on osteoclasts is by inducing apoptosis. The mechanism of action is apparently by the formation of an ATP analogue or metabolite of the bisphosphonates like etidronic acid and clodronic acid. The ATP analogue accumulates in the cytosol of the osteoclast with a cytotoxic effect.
The primary mechanism of action of the more developed nitrogen containing bisphosphonates is however by cellular effects on osteoclasts through inhibition of the mevalonate pathway and in particular the subsequent formation of isoprenoid lipids. The inhibition takes place at a key branch point in the pathway catalyzed by farnesyl pyrophosphate synthase (FPPS). Isoprenoid lipids are necessary for post-translational modifications of small GTP-binding regulatory proteins like Rac, Rho and Ras of the Ras superfamily. The function of osteoclasts depends on them for a variety of cellular processes like apoptosis.
Modification of the R1 side chain on bisphosphonates is very minor today, single hydroxyl group at that position seems to give the best results in terms of activity. The hydroxyl group plays a role in forming a water-induced bond with glutamine (Gln240) on the target enzyme. Drugs that have no hydroxyl group initially cause better inhibition than parent compounds, without hydroxyl group the drug seems to fit more easily into the open active site. The absence of hydroxyl group however reduces the ability to hold the target enzyme complex in isomerized state. Biological activity of bisphosphonates with hydroxyl group, therefore, appears over longer time.
Increased carbon length of the nitrogen R2 side chain alters activity. Side chain that is made out of three carbons has proven to be the most ideal length in terms of activity, increasing or decreasing the length of the chain from there has negative effect on biological activity. Alendronate, a common bisphosphonate drug, has a three carbon length side chain for example. Risedronate has heterocyclic structure containing nitrogen. Heterocyclic nitrogen containing bisphosphonates have revealed better results in terms of activity compared to earlier bisphosphonates with nitrogen bound to carbon chain. Studies on risedronate analogous with different placement of nitrogen on the ring have shown no measurable difference on biological activity. Increased length of carbon chain connected to the ring revealed negative results. Zoledronate is the most potent bisphosphonate drug today only available as intravenous injection. It is the only bisphosphonate drug that has two nitrogen groups in the side chain hence its potency and route of administration differs from other drugs in the same class.
Widler, Leo; Jaeggi, Knut A.; Glatt, Markus; Müller, Klaus; Bachmann, Rolf; Bisping, Michael; Born, Anne-Ruth; Cortesi, Reto; Guiglia, Gabriela; Jeker, Heidi; Klein, Rémy (2002-08-01). "Highly Potent Geminal Bisphosphonates. From Pamidronate Disodium (Aredia) to Zoledronic Acid (Zometa)". Journal of Medicinal Chemistry. 45 (17): 3721–3738. doi:10.1021/jm020819i. ISSN 0022-2623. PMID 12166945. /wiki/Doi_(identifier)
Reid, Ian R.; Brown, Jacques P.; Burckhardt, Peter; Horowitz, Zebulun; Richardson, Peter; Trechsel, Ulrich; Widmer, Albert; Devogelaer, Jean-Pierre; Kaufman, Jean-Marc; Jaeger, Philippe; Body, Jean-Jacques (2002-02-28). "Intravenous Zoledronic Acid in Postmenopausal Women with Low Bone Mineral Density". New England Journal of Medicine. 346 (9): 653–661. doi:10.1056/NEJMoa011807. ISSN 0028-4793. PMID 11870242. https://doi.org/10.1056%2FNEJMoa011807
Thompson, Keith; Rogers, Michael J. (2007-09-01). "The Molecular Mechanisms of Action of Bisphosphonates". Clinical Reviews in Bone and Mineral Metabolism. 5 (3): 130–144. doi:10.1007/s12018-007-9004-0. ISSN 1559-0119. S2CID 27893280. /wiki/Doi_(identifier)
Widler, Leo; Jaeggi, Knut A.; Glatt, Markus; Müller, Klaus; Bachmann, Rolf; Bisping, Michael; Born, Anne-Ruth; Cortesi, Reto; Guiglia, Gabriela; Jeker, Heidi; Klein, Rémy (2002-08-01). "Highly Potent Geminal Bisphosphonates. From Pamidronate Disodium (Aredia) to Zoledronic Acid (Zometa)". Journal of Medicinal Chemistry. 45 (17): 3721–3738. doi:10.1021/jm020819i. ISSN 0022-2623. PMID 12166945. /wiki/Doi_(identifier)
US 8012949, Oldfield, Eric; Zhang, Yonghui & Yin, Fenglin, "Bisphosphonate compounds and methods with enhanced potency for multiple targets including FPPS, GGPPS, and DPPS", published 2011-09-06, assigned to The Board of Trustees of the University of Illinois
https://worldwide.espacenet.com/textdoc?DB=EPODOC&IDX=US8012949
Matthiesen, Robert A.; Varney, Michelle L.; Xu, Pauline C.; Rier, Alex S.; Wiemer, David F.; Holstein, Sarah A. (January 2018). "α-Methylation enhances the potency of isoprenoid triazole bisphosphonates as geranylgeranyl diphosphate synthase inhibitors". Bioorganic & Medicinal Chemistry. 26 (2): 376–385. doi:10.1016/j.bmc.2017.10.023. PMC 5752576. PMID 29248353. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5752576
Shimoda, Kazuma; Mitsuoka, Takahiro; Ueda, Kenta; Suemune, Hiroshi; Hirai, Go; Aso, Mariko (2018-12-19). "Synthesis of dendritic bisphosphonates as bone targeting ligands". Tetrahedron Letters. 59 (51): 4528–4531. doi:10.1016/j.tetlet.2018.11.028. ISSN 0040-4039. S2CID 105937637. /wiki/Doi_(identifier)
Thompson, Keith; Rogers, Michael J. (2007-09-01). "The Molecular Mechanisms of Action of Bisphosphonates". Clinical Reviews in Bone and Mineral Metabolism. 5 (3): 130–144. doi:10.1007/s12018-007-9004-0. ISSN 1559-0119. S2CID 27893280. /wiki/Doi_(identifier)
Masarachia, P.; Weinreb, M.; Balena, R.; Rodan, G. A. (1996-09-01). "Comparison of the distribution of 3H-alendronate and 3H-Etidronate in rat and mouse bones". Bone. 19 (3): 281–290. doi:10.1016/8756-3282(96)00182-2. ISSN 8756-3282. PMID 8873969. /wiki/Doi_(identifier)
Sato, M; Grasser, W; Endo, N; Akins, R; Simmons, H; Thompson, D D; Golub, E; Rodan, G A (1991-12-01). "Bisphosphonate action. Alendronate localization in rat bone and effects on osteoclast ultrastructure". Journal of Clinical Investigation. 88 (6): 2095–2105. doi:10.1172/JCI115539. ISSN 0021-9738. PMC 295810. PMID 1661297. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC295810
Benford, Helena L.; Frith, Julie C.; Auriola, Seppo; Mönkkönen, Jukka; Rogers, Michael J. (1999-07-01). "Farnesol and Geranylgeraniol Prevent Activation of Caspases by Aminobisphosphonates: Biochemical Evidence for Two Distinct Pharmacological Classes of Bisphosphonate Drugs". Molecular Pharmacology. 56 (1): 131–140. doi:10.1124/mol.56.1.131. ISSN 0026-895X. PMID 10385693. /wiki/Doi_(identifier)
Selander, K. S.; Mönkkönen, J.; Karhukorpi, E. K.; Härkönen, P.; Hannuniemi, R.; Väänänen, H. K. (1996-11-01). "Characteristics of clodronate-induced apoptosis in osteoclasts and macrophages". Molecular Pharmacology. 50 (5): 1127–1138. ISSN 0026-895X. PMID 8913344. http://molpharm.aspetjournals.org/content/50/5/1127
Ebetino, Frank H.; Hogan, Anne-Marie L.; Sun, Shuting; Tsoumpra, Maria K.; Duan, Xuchen; Triffitt, James T.; Kwaasi, Aaron A.; Dunford, James E.; Barnett, Bobby L.; Oppermann, Udo; Lundy, Mark W. (2011-07-01). "The relationship between the chemistry and biological activity of the bisphosphonates". Bone. 49 (1): 20–33. doi:10.1016/j.bone.2011.03.774. ISSN 8756-3282. PMID 21497677. /wiki/Doi_(identifier)
Coxon, F.P.; Rogers, M.J. (2003-01-01). "The Role of Prenylated Small GTP-Binding Proteins in the Regulation of Osteoclast Function". Calcified Tissue International. 72 (1): 80–84. doi:10.1007/s00223-002-2017-2. ISSN 0171-967X. PMID 12370802. S2CID 37621041. /wiki/Doi_(identifier)
Widler, Leo; Jaeggi, Knut A.; Glatt, Markus; Müller, Klaus; Bachmann, Rolf; Bisping, Michael; Born, Anne-Ruth; Cortesi, Reto; Guiglia, Gabriela; Jeker, Heidi; Klein, Rémy (August 2002). "Highly Potent Geminal Bisphosphonates. From Pamidronate Disodium (Aredia) to Zoledronic Acid (Zometa)". Journal of Medicinal Chemistry. 45 (17): 3721–3738. doi:10.1021/jm020819i. ISSN 0022-2623. PMID 12166945. /wiki/Doi_(identifier)
Dunford, James E.; Kwaasi, Aaron A.; Rogers, Michael J.; Barnett, Bobby L.; Ebetino, Frank H.; Russell, R. Graham G.; Oppermann, Udo; Kavanagh, Kathryn L. (April 2008). "Structure–Activity Relationships Among the Nitrogen Containing Bisphosphonates in Clinical Use and Other Analogues: Time-Dependent Inhibition of Human Farnesyl Pyrophosphate Synthase". Journal of Medicinal Chemistry. 51 (7): 2187–2195. doi:10.1021/jm7015733. ISSN 0022-2623. PMID 18327899. /wiki/Doi_(identifier)
Dunford, James E.; Kwaasi, Aaron A.; Rogers, Michael J.; Barnett, Bobby L.; Ebetino, Frank H.; Russell, R. Graham G.; Oppermann, Udo; Kavanagh, Kathryn L. (April 2008). "Structure–Activity Relationships Among the Nitrogen Containing Bisphosphonates in Clinical Use and Other Analogues: Time-Dependent Inhibition of Human Farnesyl Pyrophosphate Synthase". Journal of Medicinal Chemistry. 51 (7): 2187–2195. doi:10.1021/jm7015733. ISSN 0022-2623. PMID 18327899. /wiki/Doi_(identifier)
Dunford, James E.; Kwaasi, Aaron A.; Rogers, Michael J.; Barnett, Bobby L.; Ebetino, Frank H.; Russell, R. Graham G.; Oppermann, Udo; Kavanagh, Kathryn L. (2008-04-01). "Structure–Activity Relationships Among the Nitrogen Containing Bisphosphonates in Clinical Use and Other Analogues: Time-Dependent Inhibition of Human Farnesyl Pyrophosphate Synthase". Journal of Medicinal Chemistry. 51 (7): 2187–2195. doi:10.1021/jm7015733. ISSN 0022-2623. PMID 18327899. /wiki/Doi_(identifier)
Dunford, James E.; Kwaasi, Aaron A.; Rogers, Michael J.; Barnett, Bobby L.; Ebetino, Frank H.; Russell, R. Graham G.; Oppermann, Udo; Kavanagh, Kathryn L. (April 2008). "Structure–Activity Relationships Among the Nitrogen Containing Bisphosphonates in Clinical Use and Other Analogues: Time-Dependent Inhibition of Human Farnesyl Pyrophosphate Synthase". Journal of Medicinal Chemistry. 51 (7): 2187–2195. doi:10.1021/jm7015733. ISSN 0022-2623. PMID 18327899. /wiki/Doi_(identifier)
Tripathi, KD (2013), "Chapter-09 Adrenergic System and Drugs", Essentials of Medical Pharmacology, Jaypee Brothers Medical Publishers (P) Ltd., pp. 124–139, doi:10.5005/jp/books/12021_10, ISBN 9789350259375 9789350259375
Fleisch, Herbert (2002). "Development of bisphosphonates". Breast Cancer Research. 4 (1): 30–34. doi:10.1186/bcr414. ISSN 1465-5411. PMC 138713. PMID 11879557. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC138713
van Beek, E. R.; Löwik, C. W. G. M.; Ebetino, F. H.; Papapoulos, S. E. (1998-11-01). "Binding and antiresorptive properties of heterocycle-containing bisphosphonate analogs: structure-activity relationships". Bone. 23 (5): 437–442. doi:10.1016/S8756-3282(98)00120-3. ISSN 8756-3282. PMID 9823450. /wiki/Doi_(identifier)
Tripathi, KD (2013), "Chapter-09 Adrenergic System and Drugs", Essentials of Medical Pharmacology, Jaypee Brothers Medical Publishers (P) Ltd., pp. 124–139, doi:10.5005/jp/books/12021_10, ISBN 9789350259375 9789350259375