As discrete-time Markov process, PCA are defined on a product space E = ∏ k ∈ G S k {\displaystyle E=\prod _{k\in G}S_{k}} (cartesian product) where G {\displaystyle G} is a finite or infinite graph, like Z {\displaystyle \mathbb {Z} } and where S k {\displaystyle S_{k}} is a finite space, like for instance S k = { − 1 , + 1 } {\displaystyle S_{k}=\{-1,+1\}} or S k = { 0 , 1 } {\displaystyle S_{k}=\{0,1\}} . The transition probability has a product form P ( d σ | η ) = ⊗ k ∈ G p k ( d σ k | η ) {\displaystyle P(d\sigma |\eta )=\otimes _{k\in G}p_{k}(d\sigma _{k}|\eta )} where η ∈ E {\displaystyle \eta \in E} and p k ( d σ k | η ) {\displaystyle p_{k}(d\sigma _{k}|\eta )} is a probability distribution on S k {\displaystyle S_{k}} . In general some locality is required p k ( d σ k | η ) = p k ( d σ k | η V k ) {\displaystyle p_{k}(d\sigma _{k}|\eta )=p_{k}(d\sigma _{k}|\eta _{V_{k}})} where η V k = ( η j ) j ∈ V k {\displaystyle \eta _{V_{k}}=(\eta _{j})_{j\in V_{k}}} with V k {\displaystyle {V_{k}}} a finite neighbourhood of k. See 4 for a more detailed introduction following the probability theory's point of view.
There is a version of the majority cellular automaton with probabilistic updating rules. See the Toom's rule.
PCA may be used to simulate the Ising model of ferromagnetism in statistical mechanics.5 Some categories of models were studied from a statistical mechanics point of view.
There is a strong connection6 between probabilistic cellular automata and the cellular Potts model in particular when it is implemented in parallel.
The Galves–Löcherbach model is an example of a generalized PCA with a non Markovian aspect.
Toom, A. L. (1978), Locally Interacting Systems and their Application in Biology: Proceedings of the School-Seminar on Markov Interaction Processes in Biology, held in Pushchino, March 1976, Lecture Notes in Mathematics, vol. 653, Springer-Verlag, Berlin-New York, ISBN 978-3-540-08450-1, MR 0479791 978-3-540-08450-1 ↩
R. L. Dobrushin; V. I. Kri︠u︡kov; A. L. Toom (1978). Stochastic Cellular Systems: Ergodicity, Memory, Morphogenesis. Manchester University Press. ISBN 9780719022067. 9780719022067 ↩
Fernandez, R.; Louis, P.-Y.; Nardi, F. R. (2018). "Chapter 1: Overview: PCA Models and Issues". In Louis, P.-Y.; Nardi, F. R. (eds.). Probabilistic Cellular Automata. Springer. doi:10.1007/978-3-319-65558-1_1. ISBN 9783319655581. S2CID 64938352. 9783319655581 ↩
P.-Y. Louis PhD https://tel.archives-ouvertes.fr/tel-00002203v1 ↩
Vichniac, G. (1984), "Simulating physics with cellular automata", Physica D, 10 (1–2): 96–115, Bibcode:1984PhyD...10...96V, doi:10.1016/0167-2789(84)90253-7. /wiki/Bibcode_(identifier) ↩
Boas, Sonja E. M.; Jiang, Yi; Merks, Roeland M. H.; Prokopiou, Sotiris A.; Rens, Elisabeth G. (2018). "Chapter 18: Cellular Potts Model: Applications to Vasculogenesis and Angiogenesis". In Louis, P.-Y.; Nardi, F. R. (eds.). Probabilistic Cellular Automata. Springer. doi:10.1007/978-3-319-65558-1_18. hdl:1887/69811. ISBN 9783319655581. 9783319655581 ↩