Superconductors are implemented due to the fact that at low temperatures they have infinite conductivity and zero resistance. Each qubit is built using semiconductor circuits with an LC circuit: a capacitor and an inductor.
Superconducting capacitors and inductors are used to produce a resonant circuit that dissipates almost no energy, as heat can disrupt quantum information. The superconducting resonant circuits are a class of artificial atoms that can be used as qubits. Theoretical and physical implementations of quantum circuits are widely different. Implementing a quantum circuit had its own set of challenges and must abide by DiVincenzo's criteria, conditions proposed by theoretical physicist David P DiVincenzo, which is set of criteria for the physical implementation of superconducting quantum computing, where the initial five criteria ensure that the quantum computer is in line with the postulates of quantum mechanics and the remaining two pertaining to the relaying of this information over a network.
We map the ground and excited states of these atoms to the 0 and 1 state as these are discrete and distinct energy values and therefore it is in line with the postulates of quantum mechanics. In such a construction however an electron can jump to multiple other energy states and not be confined to our excited state; therefore, it is imperative that the system be limited to be affected only by photons with energy difference required to jump from the ground state to the excited state. However, this leaves one major issue, we require uneven spacing between our energy levels to prevent photons with the same energy from causing transitions between neighboring pairs of states. Josephson junctions are superconducting elements with a nonlinear inductance, which is critically important for qubit implementation. The use of this nonlinear element in the resonant superconducting circuit produces uneven spacings between the energy levels.
To obtain a quantum mechanical description of an electrical circuit, a few steps are required. Firstly, all electrical elements must be described by the condensate wave function amplitude and phase rather than by closely related macroscopic current and voltage descriptions used for classical circuits. For instance, the square of the wave function amplitude at any arbitrary point in space corresponds to the probability of finding a charge carrier there. Therefore, the squared amplitude corresponds to a classical charge distribution. The second requirement to obtain a quantum mechanical description of an electrical circuit is that generalized Kirchhoff's circuit laws are applied at every node of the circuit network to obtain the system's equations of motion. Finally, these equations of motion must be reformulated to Lagrangian mechanics such that a quantum Hamiltonian is derived describing the total energy of the system.
where
I
0
{\displaystyle I_{0}}
is the critical current parameter of the Josephson junction,
Φ
0
=
h
2
e
{\displaystyle \textstyle \Phi _{0}={\frac {h}{2e}}}
is (superconducting) flux quantum, and
δ
{\displaystyle \delta }
is the phase difference across the junction. Notice that the term
c
o
s
δ
{\displaystyle cos\delta }
indicates nonlinearity of the Josephson junction. Charge energy is written as
E
C
=
e
2
2
C
{\displaystyle E_{C}={\frac {e^{2}}{2C}}}
,
where
C
{\displaystyle C}
is the junction's capacitance and
e
{\displaystyle e}
is electron charge. Of the three archetypes, phase qubits allow the most of Cooper pairs to tunnel through the junction, followed by flux qubits, and charge qubits allow the fewest.
The phase qubit possesses a Josephson to charge energy ratio on the order of magnitude
10
6
{\displaystyle 10^{6}}
. For phase qubits, energy levels correspond to different quantum charge oscillation amplitudes across a Josephson junction, where charge and phase are analogous to momentum and position respectively as analogous to a quantum harmonic oscillator. Note that in this context phase is the complex argument of the superconducting wave function (also known as the superconducting order parameter), not the phase between the different states of the qubit.
The flux qubit (also known as a persistent-current qubit) possesses a Josephson to charging energy ratio on the order of magnitude
10
{\displaystyle 10}
. For flux qubits, the energy levels correspond to different integer numbers of magnetic flux quanta trapped in a superconducting ring.
Fluxonium qubits are a specific type of flux qubit whose Josephson junction is shunted by a linear inductor of
E
J
≫
E
L
{\displaystyle E_{J}\gg E_{L}}
where
E
L
=
(
ℏ
/
2
e
)
2
/
L
{\displaystyle E_{L}=(\hbar /2e)^{2}/L}
. In practice, the linear inductor is usually implemented by a Josephson junction array that is composed of a large number (can be often
N
>
100
{\displaystyle N>100}
) of large-sized Josephson junctions connected in a series. Under this condition, the Hamiltonian of a fluxonium can be written as:
H
^
=
4
E
C
n
^
2
+
1
2
E
L
(
ϕ
^
−
ϕ
e
x
t
)
2
−
E
J
cos
ϕ
^
{\displaystyle {\hat {H}}=4E_{C}{\hat {n}}^{2}+{\frac {1}{2}}E_{L}({\hat {\phi }}-\phi _{\mathrm {ext} })^{2}-E_{J}\cos {\hat {\phi }}}
.
The Xmon is very similar in design to a transmon in that it originated based on the planar transmon model. An Xmon is essentially a tunable transmon. The major distinguishing difference between transmon and Xmon qubits is the Xmon qubits is grounded with one of its capacitor pads.
Another variation of the transmon qubit is the Gatemon. Like the Xmon, the Gatemon is a tunable variation of the transmon. The Gatemon is tunable via gate voltage.
In the table above, the three superconducting qubit archetypes are reviewed. In the first row, the qubit's electrical circuit diagram is presented. The second row depicts a quantum Hamiltonian derived from the circuit. Generally, the Hamiltonian is the sum of the system's kinetic and potential energy components (analogous to a particle in a potential well). For the Hamiltonians denoted,
ϕ
{\displaystyle \phi }
is the superconducting wave function phase difference across the junction,
C
J
{\displaystyle C_{J}}
is the capacitance associated with the Josephson junction, and
q
{\displaystyle q}
is the charge on the junction capacitance. For each potential depicted, only solid wave functions are used for computation. The qubit potential is indicated by a thick red line, and schematic wave function solutions are depicted by thin lines, lifted to their appropriate energy level for clarity.
of frequency
ω
d
{\displaystyle \omega _{d}}
, a driven qubit Hamiltonian in a rotating wave approximation is
H
R
/
ℏ
=
(
ω
−
ω
d
)
|
1
⟩
⟨
1
|
+
E
x
(
t
)
2
σ
x
+
E
y
(
t
)
2
σ
y
{\displaystyle H^{R}/\hbar =(\omega -\omega _{d})|1\rangle \langle 1|+{\frac {{\mathcal {E}}^{x}(t)}{2}}\sigma _{x}+{\frac {{\mathcal {E}}^{y}(t)}{2}}\sigma _{y}}
,
where
ω
{\displaystyle \omega }
is the qubit resonance and
σ
x
,
σ
y
{\displaystyle \sigma _{x},\sigma _{y}}
are Pauli matrices.
To implement a rotation about the
X
{\displaystyle X}
axis, one can set
E
y
(
t
)
=
0
{\displaystyle {\mathcal {E}}^{y}(t)=0}
and apply a microwave pulse at frequency
ω
d
=
ω
{\displaystyle \omega _{d}=\omega }
for time
t
g
{\displaystyle t_{g}}
. The resulting transformation is
U
x
=
exp
{
−
i
ℏ
∫
0
t
g
H
R
d
t
}
=
exp
{
−
i
∫
0
t
g
E
x
(
t
)
d
t
⋅
σ
x
/
2
}
{\displaystyle U_{x}=\exp \left\{-{\frac {i}{\hbar }}\int _{0}^{t_{g}}H^{R}dt\right\}=\exp \left\{-i\int _{0}^{t_{g}}{\mathcal {E}}^{x}(t)dt\cdot \sigma _{x}/2\right\}}
.
up to the global phase
−
i
{\displaystyle -i}
and is known as the NOT gate.
One popular gating mechanism uses two qubits and a bus, each tuned to different energy level separations. Applying microwave excitation to the first qubit, with a frequency resonant with the second qubit, causes a
σ
x
{\displaystyle \sigma _{x}}
rotation of the second qubit. Rotation direction depends on the state of the first qubit, allowing a controlled phase gate construction.
Following the notation of, the drive Hamiltonian describing the excited system through the first qubit driving line is formally written
H
D
/
ℏ
=
A
(
t
)
cos
(
ω
~
2
t
)
(
σ
x
⊗
I
−
J
Δ
12
σ
z
⊗
σ
x
+
m
12
I
⊗
σ
x
)
{\displaystyle H_{D}/\hbar =A(t)\cos({\tilde {\omega }}_{2}t)\left(\sigma _{x}\otimes I-{\frac {J}{\Delta _{12}}}\sigma _{z}\otimes \sigma _{x}+m_{12}I\otimes \sigma _{x}\right)}
,
where
A
(
t
)
{\displaystyle A(t)}
is the shape of the microwave pulse in time,
ω
~
2
{\displaystyle {\tilde {\omega }}_{2}}
is resonance frequency of the second qubit,
{
I
,
σ
x
,
σ
y
,
σ
z
}
{\displaystyle \{I,\sigma _{x},\sigma _{y},\sigma _{z}\}}
are the Pauli matrices,
J
{\displaystyle J}
is the coupling coefficient between the two qubits via the resonator,
Δ
12
≡
ω
1
−
ω
2
{\displaystyle \Delta _{12}\equiv \omega _{1}-\omega _{2}}
is qubit detuning,
m
12
{\displaystyle m_{12}}
is stray (unwanted) coupling between qubits, and
ℏ
{\displaystyle \hbar }
is the reduced Planck constant. The time integral over
A
(
t
)
{\displaystyle A(t)}
determines the angle of rotation. Unwanted rotations from the first and third terms of the Hamiltonian can be compensated for with single qubit operations. The remaining component, combined with single qubit rotations, forms a basis for the su(4) Lie algebra.
Higher levels (outside of the computational subspace) of a pair of coupled superconducting circuits can be used to induce a geometric phase on one of the computational states of the qubits. This leads to an entangling conditional phase shift of the relevant qubit states. This effect has been implemented by flux-tuning the qubit spectra and by using selective microwave driving. Off-resonant driving can be used to induce differential ac-Stark shift, allowing the implementation of all-microwave controlled-phase gates.
H
^
X
X
Z
/
ℏ
=
∑
i
,
j
J
X
Y
(
σ
^
x
i
σ
^
x
j
+
σ
^
y
i
σ
^
y
j
)
+
J
Z
Z
σ
^
z
i
σ
^
z
j
{\displaystyle {\hat {\mathcal {H}}}_{\mathrm {XXZ} }/\hbar =\sum _{i,j}J_{\mathrm {XY} }({\hat {\sigma }}_{\text{x}}^{i}{\hat {\sigma }}_{\text{x}}^{j}+{\hat {\sigma }}_{\text{y}}^{i}{\hat {\sigma }}_{\text{y}}^{j})+J_{\mathrm {ZZ} }{\hat {\sigma }}_{\text{z}}^{i}{\hat {\sigma }}_{\text{z}}^{j}}
,
serves as the basis for analog quantum simulation of spin systems and the primitive for an expressive set of quantum gates, sometimes referred to as fermionic simulation (or fSim) gates. In superconducting circuits, this interaction model has been implemented using flux-tunable qubits with flux-tunable coupling, allowing the demonstration of quantum supremacy. In addition, it can also be realized in fixed-frequency qubits with fixed-coupling using microwave drives. The fSim gate family encompasses arbitrary XY and ZZ two-qubit unitaries, including the iSWAP, the CZ, and the SWAP gates (see Quantum logic gate).
One of the primary challenges of superconducting quantum computing is the extremely low temperatures at which superconductors like Bose-Einstein Condensates exist. Other basic challenges in superconducting qubit design are shaping the potential well and choosing particle mass such that energy separation between two specific energy levels is unique, differing from all other interlevel energy separation in the system, since these two levels are used as logical states of the qubit.
Although not the newest development, the focus began to shift onto superconducting qubits in the latter half of the 1990s when quantum tunneling across Josephson junctions became apparent which allowed for the realization that quantum computing could be achieved through these superconducting qubits.
At the end of the century in 1999, a paper was published by Yasunobu Nakamura, which exhibited the initial design of a superconducting qubit which is now known as the "charge qubit". This is the primary basis point on which later designs amended upon. These initial qubits had their limitations in respect to maintaining long coherence times and destructive measurements. The further amendment to this initial breakthrough lead to the invention of the phase and flux qubit and subsequently resulting in the transmon qubit which is now widely and primarily used in Superconducting Quantum Computing.The transmon qubit has enhanced original designs and has further cushioned charge noise from the qubit.
The journey has been long, arduous and full of breakthroughs but has seen significant advancements in the recent history and has massive potential for revolutionizing computing.
The sector's leading industry giants, like Google, IBM and Baidu, are using superconducting quantum computing and transmon qubits to make leaps and bounds in the area of quantum computing.
In August 2022, Baidu released its plans to build a fully integrated top to bottom quantum computer which incorporated superconducting qubits. This computer will be all encompassing with hardware, software and applications fully integrated. This is a first in the world of quantum computing and will lead to ground-breaking advancements.
IBM released the following roadmap publicly that they have set for their quantum computers which also incorporated superconducting qubits and the transmon qubit.
2021: In 2021, IBM came out with their 127-qubit processor.
2022: On November 9, IBM announced its 433 qubit processor called "Osprey".
2023: IBM plan on releasing their Condor quantum processor with 1,121 qubits.
2024: IBM plan on releasing their Flamingo quantum processor with 1,386+ qubits.
2025: IBM plan on releasing their Kookaburra quantum processor with 4,158+ qubits.
2026 and beyond: IBM plan on releasing a quantum processor that scaled beyond 10,000 qubits to a 100,000 qubits.
"PennyLane Documentation — PennyLane". docs.pennylane.ai. Retrieved 2022-12-11. https://docs.pennylane.ai/en/stable/index.html
Castelvecchi, Davide (5 January 2017). "Quantum computers ready to leap out of the lab in 2017". Nature. 541 (7635): 9–10. Bibcode:2017Natur.541....9C. doi:10.1038/541009a. PMID 28054624. S2CID 4447373. https://doi.org/10.1038%2F541009a
"IBM Makes Quantum Computing Available on IBM Cloud". www-03.ibm.com. 4 May 2016. Archived from the original on May 4, 2016. https://web.archive.org/web/20160504214945/http://www-03.ibm.com/press/us/en/pressrelease/49661.wss
"Imec enters the race to unleash quantum computing with silicon qubits". www.imec-int.com. Retrieved 2019-11-10. https://www.imec-int.com/en/articles/imec-enters-the-race-to-unleash-quantum-computing-with-silicon-qubits
Colm A. Ryan, Blake R. Johnson, Diego Ristè, Brian Donovan, Thomas A. Ohki, "Hardware for Dynamic Quantum Computing", arXiv:1704.08314v1
"Rigetti Launches Quantum Cloud Services, Announces $1Million Challenge". HPCwire. 2018-09-07. Retrieved 2018-09-16. https://www.hpcwire.com/2018/09/07/rigetti-launches-quantum-cloud-services-announces-1million-challenge/
"Intel Invests US$50 Million to Advance Quantum Computing | Intel Newsroom". Intel Newsroom. https://newsroom.intel.com/news-releases/intel-invests-us50-million-to-advance-quantum-computing/
Kelly, J.; Barends, R.; Fowler, A. G.; Megrant, A.; Jeffrey, E.; White, T. C.; Sank, D.; Mutus, J. Y.; Campbell, B.; Chen, Yu; Chen, Z.; Chiaro, B.; Dunsworth, A.; Hoi, I.-C.; Neill, C.; O’Malley, P. J. J.; Quintana, C.; Roushan, P.; Vainsencher, A.; Wenner, J.; Cleland, A. N.; Martinis, John M. (4 March 2015). "State preservation by repetitive error detection in a superconducting quantum circuit". Nature. 519 (7541): 66–69. arXiv:1411.7403. Bibcode:2015Natur.519...66K. doi:10.1038/nature14270. PMID 25739628. S2CID 3032369. /wiki/ArXiv_(identifier)
"IBM Makes Quantum Computing Available on IBM Cloud". www-03.ibm.com. 4 May 2016. Archived from the original on May 4, 2016. https://web.archive.org/web/20160504214945/http://www-03.ibm.com/press/us/en/pressrelease/49661.wss
Arute, Frank; Arya, Kunal; Babbush, Ryan; Bacon, Dave; Bardin, Joseph C.; Barends, Rami; Biswas, Rupak; Boixo, Sergio; Brandao, Fernando G. S. L.; Buell, David A.; Burkett, Brian; Chen, Yu; Chen, Zijun; Chiaro, Ben; Collins, Roberto; Courtney, William; Dunsworth, Andrew; Farhi, Edward; Foxen, Brooks; Fowler, Austin; Gidney, Craig; Giustina, Marissa; Graff, Rob; Guerin, Keith; Habegger, Steve; Harrigan, Matthew P.; Hartmann, Michael J.; Ho, Alan; Hoffmann, Markus; Huang, Trent; Humble, Travis S.; Isakov, Sergei V.; Jeffrey, Evan; Jiang, Zhang; Kafri, Dvir; Kechedzhi, Kostyantyn; Kelly, Julian; Klimov, Paul V.; Knysh, Sergey; Korotkov, Alexander; Kostritsa, Fedor; Landhuis, David; Lindmark, Mike; Lucero, Erik; Lyakh, Dmitry; Mandrà, Salvatore; McClean, Jarrod R.; McEwen, Matthew; Megrant, Anthony; Mi, Xiao; Michielsen, Kristel; Mohseni, Masoud; Mutus, Josh; Naaman, Ofer; Neeley, Matthew; Neill, Charles; Niu, Murphy Yuezhen; Ostby, Eric; Petukhov, Andre; Platt, John C.; Quintana, Chris; Rieffel, Eleanor G.; Roushan, Pedram; Rubin, Nicholas C.; Sank, Daniel; Satzinger, Kevin J.; Smelyanskiy, Vadim; Sung, Kevin J.; Trevithick, Matthew D.; Vainsencher, Amit; Villalonga, Benjamin; White, Theodore; Yao, Z. Jamie; Yeh, Ping; Zalcman, Adam; Neven, Hartmut; Martinis, John M. (October 2019). "Quantum supremacy using a programmable superconducting processor". Nature. 574 (7779): 505–510. arXiv:1910.11333. Bibcode:2019Natur.574..505A. doi:10.1038/s41586-019-1666-5. PMID 31645734. https://doi.org/10.1038%2Fs41586-019-1666-5
Dayal, Geeta. "LEGO Turing Machine Is Simple, Yet Sublime". WIRED. https://www.wired.com/2012/06/lego-turing-machine/
"DiVincenzo's Criteria – Quantum Computing Codex". qc-at-davis.github.io. Retrieved 2022-12-13. https://qc-at-davis.github.io/QCC/How-Quantum-Computing-Works/DiVincenzo%27s-Criteria/DiVincenzo%27s-Criteria.html#initialize-the-state-of-qubits-to-a-simple-fiducial-state
Ballon, Alvaro (22 March 2022). "Quantum computing with superconducting qubits — PennyLane". Pennylane Demos. Retrieved 2022-12-13. https://pennylane.ai/qml/demos/tutorial_sc_qubits.html
Ballon, Alvaro (22 March 2022). "Quantum computing with superconducting qubits — PennyLane". Pennylane Demos. Retrieved 2022-12-13. https://pennylane.ai/qml/demos/tutorial_sc_qubits.html
"Cooper Pairs". http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/coop.html
Shen, L. Y. L. (1972-02-01). "Superconductivity of Tantalum, Niobium and Lanthanum Studied by Electron Tunneling: Problems of Surface Contamination". AIP Conference Proceedings. 4 (1): 31–44. Bibcode:1972AIPC....4...31S. doi:10.1063/1.2946195. ISSN 0094-243X. https://aip.scitation.org/doi/abs/10.1063/1.2946195
Greicius, Tony (2020-06-12). "NASA's Cold Atom Lab Takes One Giant Leap for Quantum Science". NASA. Retrieved 2022-12-11. https://www.nasa.gov/feature/jpl/nasas-cold-atom-lab-takes-one-giant-leap-for-quantum-science
Kjaergaard, Morten; Schwartz, Mollie E.; Braumüller, Jochen; Krantz, Philip; Wang, Joel I.-Jan; Gustavsson, Simon; Oliver, William D. (2020-03-10). "Superconducting Qubits: Current State of Play". Annual Review of Condensed Matter Physics. 11 (1): 369–395. arXiv:1905.13641. Bibcode:2020ARCMP..11..369K. doi:10.1146/annurev-conmatphys-031119-050605. ISSN 1947-5454. S2CID 173188891. /wiki/ArXiv_(identifier)
Kjaergaard, Morten; Schwartz, Mollie E.; Braumüller, Jochen; Krantz, Philip; Wang, Joel I.-Jan; Gustavsson, Simon; Oliver, William D. (2020-03-10). "Superconducting Qubits: Current State of Play". Annual Review of Condensed Matter Physics. 11 (1): 369–395. arXiv:1905.13641. Bibcode:2020ARCMP..11..369K. doi:10.1146/annurev-conmatphys-031119-050605. ISSN 1947-5454. S2CID 173188891. /wiki/ArXiv_(identifier)
"PennyLane Documentation — PennyLane". docs.pennylane.ai. Retrieved 2022-12-11. https://docs.pennylane.ai/en/stable/index.html
Manucharyan, V. E.; Koch, J.; Glazman, L. I.; Devoret, M. H. (1 October 2009). "Fluxonium: Single Cooper-Pair Circuit Free of Charge Offsets". Science. 326 (5949): 113–116. arXiv:0906.0831. Bibcode:2009Sci...326..113M. doi:10.1126/science.1175552. PMID 19797655. S2CID 17645288. /wiki/ArXiv_(identifier)
Houck, A. A.; Koch, Jens; Devoret, M. H.; Girvin, S. M.; Schoelkopf, R. J. (11 February 2009). "Life after charge noise: recent results with transmon qubits". Quantum Information Processing. 8 (2–3): 105–115. arXiv:0812.1865. Bibcode:2009QuIP....8..105H. doi:10.1007/s11128-009-0100-6. S2CID 27305073. /wiki/ArXiv_(identifier)
Barends, R.; Kelly, J.; Megrant, A.; Sank, D.; Jeffrey, E.; Chen, Y.; Yin, Y.; Chiaro, B.; Mutus, J.; Neill, C.; O’Malley, P.; Roushan, P.; Wenner, J.; White, T. C.; Cleland, A. N.; Martinis, John M. (22 August 2013). "Coherent Josephson Qubit Suitable for Scalable Quantum Integrated Circuits". Physical Review Letters. 111 (8): 080502. arXiv:1304.2322. Bibcode:2013PhRvL.111h0502B. doi:10.1103/PhysRevLett.111.080502. PMID 24010421. S2CID 27081288. /wiki/ArXiv_(identifier)
Metcalfe, M.; Boaknin, E.; Manucharyan, V.; Vijay, R.; Siddiqi, I.; Rigetti, C.; Frunzio, L.; Schoelkopf, R. J.; Devoret, M. H. (21 November 2007). "Measuring the decoherence of a quantronium qubit with the cavity bifurcation amplifier". Physical Review B. 76 (17): 174516. arXiv:0706.0765. Bibcode:2007PhRvB..76q4516M. doi:10.1103/PhysRevB.76.174516. S2CID 19088840. /wiki/ArXiv_(identifier)
Martinis, John M.; Osborne, Kevin (2004-02-16). "Superconducting Qubits and the Physics of Josephson Junctions". arXiv:cond-mat/0402415. Bibcode:2004cond.mat..2415M. {{cite journal}}: Cite journal requires |journal= (help) /wiki/ArXiv_(identifier)
Martinis, John M.; Osborne, Kevin (2004-02-16). "Superconducting Qubits and the Physics of Josephson Junctions". arXiv:cond-mat/0402415. Bibcode:2004cond.mat..2415M. {{cite journal}}: Cite journal requires |journal= (help) /wiki/ArXiv_(identifier)
Martinis, John M.; Osborne, Kevin (2004-02-16). "Superconducting Qubits and the Physics of Josephson Junctions". arXiv:cond-mat/0402415. Bibcode:2004cond.mat..2415M. {{cite journal}}: Cite journal requires |journal= (help) /wiki/ArXiv_(identifier)
Martinis, John M.; Osborne, Kevin (2004-02-16). "Superconducting Qubits and the Physics of Josephson Junctions". arXiv:cond-mat/0402415. Bibcode:2004cond.mat..2415M. {{cite journal}}: Cite journal requires |journal= (help) /wiki/ArXiv_(identifier)
Nguyen, Long B.; Lin, Yen-Hsiang; Somoroff, Aaron; Mencia, Raymond; Grabon, Nicholas; Manucharyan, Vladimir E. (25 November 2019). "High-Coherence Fluxonium Qubit". Physical Review X. 9 (4): 041041. arXiv:1810.11006. Bibcode:2019PhRvX...9d1041N. doi:10.1103/PhysRevX.9.041041. ISSN 2160-3308. S2CID 53499609. https://link.aps.org/doi/10.1103/PhysRevX.9.041041
Nguyen, Long B.; Lin, Yen-Hsiang; Somoroff, Aaron; Mencia, Raymond; Grabon, Nicholas; Manucharyan, Vladimir E. (25 November 2019). "High-Coherence Fluxonium Qubit". Physical Review X. 9 (4): 041041. arXiv:1810.11006. Bibcode:2019PhRvX...9d1041N. doi:10.1103/PhysRevX.9.041041. ISSN 2160-3308. S2CID 53499609. https://link.aps.org/doi/10.1103/PhysRevX.9.041041
Science, The National University of; MISIS, Technology. "Fluxonium qubits bring the creation of a quantum computer closer". phys.org. Retrieved 2022-12-12. https://phys.org/news/2022-11-fluxonium-qubits-creation-quantum-closer.html
Nguyen, Long B. (2020). Toward the Fluxonium Quantum Processor (Ph.D. thesis). University of Maryland, College Park. ProQuest 2455525166. https://www.proquest.com/docview/2455525166
Nguyen, Long B.; Koolstra, Gerwin; Kim, Yosep; Morvan, Alexis; Chistolini, Trevor; Singh, Shraddha; Nesterov, Konstantin N.; Jünger, Christian; Chen, Larry; Pedramrazi, Zahra; Mitchell, Bradley K.; Kreikebaum, John Mark; Puri, Shruti; Santiago, David I.; Siddiqi, Irfan (5 August 2022). "Blueprint for a High-Performance Fluxonium Quantum Processor". PRX Quantum. 3 (3): 037001. arXiv:2201.09374. Bibcode:2022PRXQ....3c7001N. doi:10.1103/PRXQuantum.3.037001. https://doi.org/10.1103%2FPRXQuantum.3.037001
"Superconducting qubits – on islands, charge qubits and the transmon". LeftAsExercise. 2019-06-06. Retrieved 2022-12-12. https://leftasexercise.com/2019/06/06/superconducting-qubits-on-islands-charge-qubits-and-the-transmon/
Wendin, G. (2017-10-01). "Quantum information processing with superconducting circuits: a review". Reports on Progress in Physics. 80 (10): 106001. arXiv:1610.02208. Bibcode:2017RPPh...80j6001W. doi:10.1088/1361-6633/aa7e1a. ISSN 0034-4885. PMID 28682303. S2CID 3940479. /wiki/ArXiv_(identifier)
Roth, Thomas E.; Ma, Ruichao; Chew, Weng C. (2023). "The Transmon Qubit for Electromagnetics Engineers: An introduction". IEEE Antennas and Propagation Magazine. 65 (2): 8–20. arXiv:2106.11352. Bibcode:2023IAPM...65b...8R. doi:10.1109/MAP.2022.3176593. /wiki/ArXiv_(identifier)
Kjaergaard, Morten; Schwartz, Mollie E.; Braumüller, Jochen; Krantz, Philip; Wang, Joel I.-J.; Gustavsson, Simon; Oliver, William D. (2020-03-10). "Superconducting Qubits: Current State of Play". Annual Review of Condensed Matter Physics. 11 (1): 369–395. arXiv:1905.13641. Bibcode:2020ARCMP..11..369K. doi:10.1146/annurev-conmatphys-031119-050605. ISSN 1947-5454. S2CID 173188891. https://www.annualreviews.org/doi/10.1146/annurev-conmatphys-031119-050605
"PennyLane Documentation — PennyLane". docs.pennylane.ai. Retrieved 2022-12-11. https://docs.pennylane.ai/en/stable/index.html
"PennyLane Documentation — PennyLane". docs.pennylane.ai. Retrieved 2022-12-11. https://docs.pennylane.ai/en/stable/index.html
Shim, Yun-Pil; Tahan, Charles (2016-03-17). "Semiconductor-inspired design principles for superconducting quantum computing". Nature Communications. 7 (1): 11059. arXiv:1507.07923. Bibcode:2016NatCo...711059S. doi:10.1038/ncomms11059. ISSN 2041-1723. PMC 4800439. PMID 26983379. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4800439
Wang, Chenlu; Li, Xuegang; Xu, Huikai; Li, Zhiyuan; Wang, Junhua; Yang, Zhen; Mi, Zhenyu; Liang, Xuehui; Su, Tang; Yang, Chuhong; Wang, Guangyue; Wang, Wenyan; Li, Yongchao; Chen, Mo; Li, Chengyao (2022-01-13). "Towards practical quantum computers: transmon qubit with a lifetime approaching 0.5 milliseconds". npj Quantum Information. 8 (1): 3. arXiv:2105.09890. Bibcode:2022npjQI...8....3W. doi:10.1038/s41534-021-00510-2. ISSN 2056-6387. S2CID 245950831. https://www.nature.com/articles/s41534-021-00510-2
"Unimon: A new qubit to boost quantum computers from IQM | IQM". www.meetiqm.com. Retrieved 2022-12-12. https://www.meetiqm.com/articles/press-releases/iqm-unimon-qubit/
Buchanan, Mark (2022-12-08). "Meet the Unimon, the New Qubit on the Block". Physics. 15: 191. Bibcode:2022PhyOJ..15..191B. doi:10.1103/Physics.15.191. S2CID 257514449. https://physics.aps.org/articles/v15/191
Buchanan, Mark (2022-12-08). "Meet the Unimon, the New Qubit on the Block". Physics. 15: 191. Bibcode:2022PhyOJ..15..191B. doi:10.1103/Physics.15.191. S2CID 257514449. https://physics.aps.org/articles/v15/191
Hyyppä, Eric; Kundu, Suman; Chan, Chun Fai; Gunyhó, András; Hotari, Juho; Janzso, David; Juliusson, Kristinn; Kiuru, Olavi; Kotilahti, Janne; Landra, Alessandro; Liu, Wei; Marxer, Fabian; Mäkinen, Akseli; Orgiazzi, Jean-Luc; Palma, Mario (2022-11-12). "Unimon qubit". Nature Communications. 13 (1): 6895. arXiv:2203.05896. Bibcode:2022NatCo..13.6895H. doi:10.1038/s41467-022-34614-w. ISSN 2041-1723. PMC 9653402. PMID 36371435. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9653402
Devoret, M. H.; Wallraff, A.; Martinis, J. M. (6 November 2004). "Superconducting Qubits: A Short Review". arXiv:cond-mat/0411174. /wiki/ArXiv_(identifier)
Motzoi, F.; Gambetta, J. M.; Rebentrost, P.; Wilhelm, F. K. (8 September 2009). "Simple Pulses for Elimination of Leakage in Weakly Nonlinear Qubits". Physical Review Letters. 103 (11): 110501. arXiv:0901.0534. Bibcode:2009PhRvL.103k0501M. doi:10.1103/PhysRevLett.103.110501. PMID 19792356. S2CID 7288207. /wiki/ArXiv_(identifier)
Motzoi, F.; Gambetta, J. M.; Rebentrost, P.; Wilhelm, F. K. (8 September 2009). "Simple Pulses for Elimination of Leakage in Weakly Nonlinear Qubits". Physical Review Letters. 103 (11): 110501. arXiv:0901.0534. Bibcode:2009PhRvL.103k0501M. doi:10.1103/PhysRevLett.103.110501. PMID 19792356. S2CID 7288207. /wiki/ArXiv_(identifier)
Chuang, Michael A. Nielsen & Isaac L. (2010). Quantum computation and quantum information (10th anniversary ed.). Cambridge: Cambridge University Press. pp. 174–176. ISBN 978-1-107-00217-3. 978-1-107-00217-3
Rigetti, Chad Tyler (2009). Quantum gates for superconducting qubits. p. 21. Bibcode:2009PhDT........50R. ISBN 9781109198874. 9781109198874
Khazali, Mohammadsadegh; Mølmer, Klaus (2020-06-11). "Fast Multiqubit Gates by Adiabatic Evolution in Interacting Excited-State Manifolds of Rydberg Atoms and Superconducting Circuits". Physical Review X. 10 (2): 021054. arXiv:2006.07035. Bibcode:2020PhRvX..10b1054K. doi:10.1103/PhysRevX.10.021054. ISSN 2160-3308. https://doi.org/10.1103%2FPhysRevX.10.021054
Khazali, Mohammadsadegh; Mølmer, Klaus (2020-06-11). "Fast Multiqubit Gates by Adiabatic Evolution in Interacting Excited-State Manifolds of Rydberg Atoms and Superconducting Circuits". Physical Review X. 10 (2): 021054. arXiv:2006.07035. Bibcode:2020PhRvX..10b1054K. doi:10.1103/PhysRevX.10.021054. ISSN 2160-3308. https://doi.org/10.1103%2FPhysRevX.10.021054
Chow, Jerry M.; Córcoles, A. D.; Gambetta, Jay M.; Rigetti, Chad; Johnson, B. R.; Smolin, John A.; Rozen, J. R.; Keefe, George A.; Rothwell, Mary B.; Ketchen, Mark B.; Steffen, M. (17 August 2011). "Simple All-Microwave Entangling Gate for Fixed-Frequency Superconducting Qubits". Physical Review Letters. 107 (8): 080502. arXiv:1106.0553. Bibcode:2011PhRvL.107h0502C. doi:10.1103/PhysRevLett.107.080502. PMID 21929152. S2CID 9302474. /wiki/ArXiv_(identifier)
Chow, Jerry M.; Córcoles, A. D.; Gambetta, Jay M.; Rigetti, Chad; Johnson, B. R.; Smolin, John A.; Rozen, J. R.; Keefe, George A.; Rothwell, Mary B.; Ketchen, Mark B.; Steffen, M. (17 August 2011). "Simple All-Microwave Entangling Gate for Fixed-Frequency Superconducting Qubits". Physical Review Letters. 107 (8): 080502. arXiv:1106.0553. Bibcode:2011PhRvL.107h0502C. doi:10.1103/PhysRevLett.107.080502. PMID 21929152. S2CID 9302474. /wiki/ArXiv_(identifier)
DiCarlo, L.; Chow, J. M.; Gambetta, J. M.; Bishop, Lev S.; Johnson, B. R.; Schuster, D. I.; Majer, J.; Blais, A.; Frunzio, L.; Girvin, S. M.; Schoelkopf, R. J. (2009-06-28). "Demonstration of two-qubit algorithms with a superconducting quantum processor". Nature. 460 (7252). Springer Science and Business Media LLC: 240–244. arXiv:0903.2030. Bibcode:2009Natur.460..240D. doi:10.1038/nature08121. ISSN 0028-0836. PMID 19561592. /wiki/ArXiv_(identifier)
Ficheux, Quentin; Nguyen, Long B.; Somoroff, Aaron; Xiong, Haonan; Nesterov, Konstantin N.; Vavilov, Maxim G.; Manucharyan, Vladimir E. (2021-05-03). "Fast Logic with Slow Qubits: Microwave-Activated Controlled-Z Gate on Low-Frequency Fluxoniums". Physical Review X. 11 (2): 021026. arXiv:2011.02634. Bibcode:2021PhRvX..11b1026F. doi:10.1103/PhysRevX.11.021026. ISSN 2160-3308. /wiki/ArXiv_(identifier)
Xiong, Haonan; Ficheux, Quentin; Somoroff, Aaron; Nguyen, Long B.; Dogan, Ebru; Rosenstock, Dario; Wang, Chen; Nesterov, Konstantin N.; Vavilov, Maxim G.; Manucharyan, Vladimir E. (2022-04-15). "Arbitrary controlled-phase gate on fluxonium qubits using differential ac Stark shifts". Physical Review Research. 4 (2): 023040. arXiv:2103.04491. Bibcode:2022PhRvR...4b3040X. doi:10.1103/PhysRevResearch.4.023040. ISSN 2643-1564. /wiki/ArXiv_(identifier)
Foxen, B.; Neill, C.; Dunsworth, A.; Roushan, P.; Chiaro, B.; Megrant, A.; Kelly, J.; Chen, Zijun; Satzinger, K.; Barends, R.; Arute, F.; Arya, K.; Babbush, R.; Bacon, D.; Bardin, J. C.; Boixo, S.; Buell, D.; Burkett, B.; Chen, Yu; Collins, R.; Farhi, E.; Fowler, A.; Gidney, C.; Giustina, M.; Graff, R.; Harrigan, M.; Huang, T.; Isakov, S. V.; Jeffrey, E.; Jiang, Z.; Kafri, D.; Kechedzhi, K.; Klimov, P.; Korotkov, A.; Kostritsa, F.; Landhuis, D.; Lucero, E.; McClean, J.; McEwen, M.; Mi, X.; Mohseni, M.; Mutus, J. Y.; Naaman, O.; Neeley, M.; Niu, M.; Petukhov, A.; Quintana, C.; Rubin, N.; Sank, D.; Smelyanskiy, V.; Vainsencher, A.; White, T. C.; Yao, Z.; Yeh, P.; Zalcman, A.; Neven, H.; Martinis, J. M.; Google AI Quantum (2020-09-15). "Demonstrating a Continuous Set of Two-qubit Gates for Near-term Quantum Algorithms". Physical Review Letters. 125 (12): 120504. arXiv:2001.08343. Bibcode:2020PhRvL.125l0504F. doi:10.1103/PhysRevLett.125.120504. ISSN 0031-9007. PMID 33016760. {{cite journal}}: |author58= has generic name (help) /wiki/ArXiv_(identifier)
Arute, Frank; Arya, Kunal; Babbush, Ryan; Bacon, Dave; Bardin, Joseph C.; Barends, Rami; Biswas, Rupak; Boixo, Sergio; Brandao, Fernando G. S. L.; Buell, David A.; Burkett, Brian; Chen, Yu; Chen, Zijun; Chiaro, Ben; Collins, Roberto; Courtney, William; Dunsworth, Andrew; Farhi, Edward; Foxen, Brooks; Fowler, Austin; Gidney, Craig; Giustina, Marissa; Graff, Rob; Guerin, Keith; Habegger, Steve; Harrigan, Matthew P.; Hartmann, Michael J.; Ho, Alan; Hoffmann, Markus; Huang, Trent; Humble, Travis S.; Isakov, Sergei V.; Jeffrey, Evan; Jiang, Zhang; Kafri, Dvir; Kechedzhi, Kostyantyn; Kelly, Julian; Klimov, Paul V.; Knysh, Sergey; Korotkov, Alexander; Kostritsa, Fedor; Landhuis, David; Lindmark, Mike; Lucero, Erik; Lyakh, Dmitry; Mandrà, Salvatore; McClean, Jarrod R.; McEwen, Matthew; Megrant, Anthony; Mi, Xiao; Michielsen, Kristel; Mohseni, Masoud; Mutus, Josh; Naaman, Ofer; Neeley, Matthew; Neill, Charles; Niu, Murphy Yuezhen; Ostby, Eric; Petukhov, Andre; Platt, John C.; Quintana, Chris; Rieffel, Eleanor G.; Roushan, Pedram; Rubin, Nicholas C.; Sank, Daniel; Satzinger, Kevin J.; Smelyanskiy, Vadim; Sung, Kevin J.; Trevithick, Matthew D.; Vainsencher, Amit; Villalonga, Benjamin; White, Theodore; Yao, Z. Jamie; Yeh, Ping; Zalcman, Adam; Neven, Hartmut; Martinis, John M. (2019-10-23). "Quantum supremacy using a programmable superconducting processor". Nature. 574 (7779). Springer Science and Business Media LLC: 505–510. arXiv:1910.11333. Bibcode:2019Natur.574..505A. doi:10.1038/s41586-019-1666-5. ISSN 0028-0836. PMID 31645734. /wiki/ArXiv_(identifier)
Nguyen, L.B.; Kim, Y.; Hashim, A.; Goss, N.; Marinelli, B.; Bhandari, B.; Das, D.; Naik, R.K.; Kreikebaum, J.M.; Jordan, A.; Santiago, D.I.; Siddiqi, I. (16 January 2024). "Programmable Heisenberg interactions between Floquet qubits". Nature Physics. 20 (1): 240–246. arXiv:2211.10383. Bibcode:2024NatPh..20..240N. doi:10.1038/s41567-023-02326-7. https://doi.org/10.1038%2Fs41567-023-02326-7
"PennyLane Documentation — PennyLane". docs.pennylane.ai. Retrieved 2022-12-11. https://docs.pennylane.ai/en/stable/index.html
Gambetta, Jay M.; Chow, Jerry M.; Steffen, Matthias (13 January 2017). "Building logical qubits in a superconducting quantum computing system". npj Quantum Information. 3 (1): 2. arXiv:1510.04375. Bibcode:2017npjQI...3....2G. doi:10.1038/s41534-016-0004-0. https://doi.org/10.1038%2Fs41534-016-0004-0
Blais, Alexandre; Huang, Ren-Shou; Wallraff, Andreas; Girvin, Steven; Schoelkopf, Robert (2004). "Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation". Phys. Rev. A. 69 (6): 062320. arXiv:cond-mat/0402216. Bibcode:2004PhRvA..69f2320B. doi:10.1103/PhysRevA.69.062320. S2CID 20427333. https://link.aps.org/doi/10.1103/PhysRevA.69.062320
Cottet, Nathanaël; Xiong, Haonan; Nguyen, Long B.; Lin, Yen-Hsiang; Manucharyan, Vladimir E. (2021-11-04). "Electron shelving of a superconducting artificial atom". Nature Communications. 12 (1). Springer Science and Business Media LLC: 6383. arXiv:2008.02423. Bibcode:2021NatCo..12.6383C. doi:10.1038/s41467-021-26686-x. ISSN 2041-1723. PMC 8569191. PMID 34737313. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8569191
"DiVincenzo's Criteria – Quantum Computing Codex". qc-at-davis.github.io. Retrieved 2022-12-13. https://qc-at-davis.github.io/QCC/How-Quantum-Computing-Works/DiVincenzo%27s-Criteria/DiVincenzo%27s-Criteria.html#initialize-the-state-of-qubits-to-a-simple-fiducial-state
DiVincenzo, David (February 1, 2008). "The Physical Implementation of Quantum Computation". IBM T.J. Watson Research Center. 48 (9–11): 771–783. arXiv:quant-ph/0002077. Bibcode:2000ForPh..48..771D. doi:10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E. S2CID 15439711. /wiki/ArXiv_(identifier)
DiVincenzo, David (February 1, 2008). "The Physical Implementation of Quantum Computation". IBM T.J. Watson Research Center. 48 (9–11): 771–783. arXiv:quant-ph/0002077. Bibcode:2000ForPh..48..771D. doi:10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E. S2CID 15439711. /wiki/ArXiv_(identifier)
Devoret, M. H.; Schoelkopf, R. J. (7 March 2013). "Superconducting Circuits for Quantum Information: An Outlook". Science. 339 (6124): 1169–1174. Bibcode:2013Sci...339.1169D. doi:10.1126/science.1231930. PMID 23471399. S2CID 10123022. /wiki/Bibcode_(identifier)
Nguyen, Long B.; Lin, Yen-Hsiang; Somoroff, Aaron; Mencia, Raymond; Grabon, Nicholas; Manucharyan, Vladimir E. (25 November 2019). "High-Coherence Fluxonium Qubit". Physical Review X. 9 (4): 041041. arXiv:1810.11006. Bibcode:2019PhRvX...9d1041N. doi:10.1103/PhysRevX.9.041041. ISSN 2160-3308. S2CID 53499609. https://link.aps.org/doi/10.1103/PhysRevX.9.041041
DiVincenzo, David (February 1, 2008). "The Physical Implementation of Quantum Computation". IBM T.J. Watson Research Center. 48 (9–11): 771–783. arXiv:quant-ph/0002077. Bibcode:2000ForPh..48..771D. doi:10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E. S2CID 15439711. /wiki/ArXiv_(identifier)
Chow, Jerry M.; Gambetta, Jay M.; Córcoles, A. D.; Merkel, Seth T.; Smolin, John A.; Rigetti, Chad; Poletto, S.; Keefe, George A.; Rothwell, Mary B.; Rozen, J. R.; Ketchen, Mark B.; Steffen, M. (9 August 2012). "Universal Quantum Gate Set Approaching Fault-Tolerant Thresholds with Superconducting Qubits". Physical Review Letters. 109 (6): 060501. arXiv:1202.5344. Bibcode:2012PhRvL.109f0501C. doi:10.1103/PhysRevLett.109.060501. PMID 23006254. S2CID 39874288. /wiki/ArXiv_(identifier)
Niskanen, A. O.; Harrabi, K.; Yoshihara, F.; Nakamura, Y.; Lloyd, S.; Tsai, J. S. (4 May 2007). "Quantum Coherent Tunable Coupling of Superconducting Qubits". Science. 316 (5825): 723–726. Bibcode:2007Sci...316..723N. doi:10.1126/science.1141324. PMID 17478714. S2CID 43175104. /wiki/Bibcode_(identifier)
Nguyen, L.B.; Kim, Y.; Hashim, A.; Goss, N.; Marinelli, B.; Bhandari, B.; Das, D.; Naik, R.K.; Kreikebaum, J.M.; Jordan, A.; Santiago, D.I.; Siddiqi, I. (16 January 2024). "Programmable Heisenberg interactions between Floquet qubits". Nature Physics. 20 (1): 240–246. arXiv:2211.10383. Bibcode:2024NatPh..20..240N. doi:10.1038/s41567-023-02326-7. https://doi.org/10.1038%2Fs41567-023-02326-7
"PennyLane Documentation — PennyLane". docs.pennylane.ai. Retrieved 2022-12-11. https://docs.pennylane.ai/en/stable/index.html
DiVincenzo, David (February 1, 2008). "The Physical Implementation of Quantum Computation". IBM T.J. Watson Research Center. 48 (9–11): 771–783. arXiv:quant-ph/0002077. Bibcode:2000ForPh..48..771D. doi:10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E. S2CID 15439711. /wiki/ArXiv_(identifier)
DiVincenzo, David (February 1, 2008). "The Physical Implementation of Quantum Computation". IBM T.J. Watson Research Center. 48 (9–11): 771–783. arXiv:quant-ph/0002077. Bibcode:2000ForPh..48..771D. doi:10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E. S2CID 15439711. /wiki/ArXiv_(identifier)
DiVincenzo, David (February 1, 2008). "The Physical Implementation of Quantum Computation". IBM T.J. Watson Research Center. 48 (9–11): 771–783. arXiv:quant-ph/0002077. Bibcode:2000ForPh..48..771D. doi:10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E. S2CID 15439711. /wiki/ArXiv_(identifier)
Morsch, Oliver; Zurich, E. T. H. "Quantum transfer at the push of a button". phys.org. Retrieved 2022-12-09. https://phys.org/news/2018-06-quantum-button.html
Kjaergaard, Morten; Schwartz, Mollie E.; Braumüller, Jochen; Krantz, Philip; Wang, Joel I.-Jan; Gustavsson, Simon; Oliver, William D. (2020-03-10). "Superconducting Qubits: Current State of Play". Annual Review of Condensed Matter Physics. 11 (1): 369–395. arXiv:1905.13641. Bibcode:2020ARCMP..11..369K. doi:10.1146/annurev-conmatphys-031119-050605. ISSN 1947-5454. S2CID 173188891. /wiki/ArXiv_(identifier)
Nguyen, Long B. (2020). Toward the Fluxonium Quantum Processor (Ph.D. thesis). University of Maryland, College Park. ProQuest 2455525166. https://www.proquest.com/docview/2455525166
Nguyen, Long B.; Koolstra, Gerwin; Kim, Yosep; Morvan, Alexis; Chistolini, Trevor; Singh, Shraddha; Nesterov, Konstantin N.; Jünger, Christian; Chen, Larry; Pedramrazi, Zahra; Mitchell, Bradley K.; Kreikebaum, John Mark; Puri, Shruti; Santiago, David I.; Siddiqi, Irfan (5 August 2022). "Blueprint for a High-Performance Fluxonium Quantum Processor". PRX Quantum. 3 (3): 037001. arXiv:2201.09374. Bibcode:2022PRXQ....3c7001N. doi:10.1103/PRXQuantum.3.037001. https://doi.org/10.1103%2FPRXQuantum.3.037001
Gambetta, Jay M.; Chow, Jerry M.; Steffen, Matthias (13 January 2017). "Building logical qubits in a superconducting quantum computing system". npj Quantum Information. 3 (1): 2. arXiv:1510.04375. Bibcode:2017npjQI...3....2G. doi:10.1038/s41534-016-0004-0. https://doi.org/10.1038%2Fs41534-016-0004-0
Kjaergaard, Morten; Schwartz, Mollie E.; Braumüller, Jochen; Krantz, Philip; Wang, Joel I.-Jan; Gustavsson, Simon; Oliver, William D. (2020-03-10). "Superconducting Qubits: Current State of Play". Annual Review of Condensed Matter Physics. 11 (1): 369–395. arXiv:1905.13641. Bibcode:2020ARCMP..11..369K. doi:10.1146/annurev-conmatphys-031119-050605. ISSN 1947-5454. S2CID 173188891. /wiki/ArXiv_(identifier)
Kjaergaard, Morten; Schwartz, Mollie E.; Braumüller, Jochen; Krantz, Philip; Wang, Joel I.-Jan; Gustavsson, Simon; Oliver, William D. (2020-03-10). "Superconducting Qubits: Current State of Play". Annual Review of Condensed Matter Physics. 11 (1): 369–395. arXiv:1905.13641. Bibcode:2020ARCMP..11..369K. doi:10.1146/annurev-conmatphys-031119-050605. ISSN 1947-5454. S2CID 173188891. /wiki/ArXiv_(identifier)
Qiskit (2022-09-28). "How The First Superconducting Qubit Changed Quantum Computing Forever". Qiskit. Retrieved 2022-12-13. https://medium.com/qiskit/how-the-first-superconducting-qubit-changed-quantum-computing-forever-96cf261b8498
Nakamura, Y.; Pashkin, Yu A.; Tsai, J. S. (April 1999). "Coherent control of macroscopic quantum states in a single-Cooper-pair box". Nature. 398 (6730): 786–788. arXiv:cond-mat/9904003. Bibcode:1999Natur.398..786N. doi:10.1038/19718. ISSN 0028-0836. S2CID 4392755. /wiki/ArXiv_(identifier)
Qiskit (2022-09-28). "How The First Superconducting Qubit Changed Quantum Computing Forever". Qiskit. Retrieved 2022-12-13. https://medium.com/qiskit/how-the-first-superconducting-qubit-changed-quantum-computing-forever-96cf261b8498
"Baidu Releases Superconducting Quantum Computer and World's First All-Platform Integration Solution, Making Quantum Computing Within Reach". www.prnewswire.com (Press release). Retrieved 2022-12-13. https://www.prnewswire.com/news-releases/baidu-releases-superconducting-quantum-computer-and-worlds-first-all-platform-integration-solution-making-quantum-computing-within-reach-301612321.html
"IBM Quantum roadmap to build quantum-centric supercomputers". IBM Research Blog. 2021-02-09. Retrieved 2022-12-13. https://research.ibm.com/blog/ibm-quantum-roadmap-2025
Lardinois, Frederic (2022-11-09). "IBM unveils its 433 qubit Osprey quantum computer". TechCrunch. Retrieved 2022-12-13. https://techcrunch.com/2022/11/09/ibm-unveils-its-433-qubit-osprey-quantum-computer/
"IBM Quantum roadmap to build quantum-centric supercomputers". IBM Research Blog. 2021-02-09. Retrieved 2022-12-13. https://research.ibm.com/blog/ibm-quantum-roadmap-2025
"IBM Quantum roadmap to build quantum-centric supercomputers". IBM Research Blog. 2021-02-09. Retrieved 2022-12-13. https://research.ibm.com/blog/ibm-quantum-roadmap-2025
"IBM Quantum roadmap to build quantum-centric supercomputers". IBM Research Blog. 2021-02-09. Retrieved 2022-12-13. https://research.ibm.com/blog/ibm-quantum-roadmap-2025
"IBM Quantum roadmap to build quantum-centric supercomputers". IBM Research Blog. 2021-02-09. Retrieved 2022-12-13. https://research.ibm.com/blog/ibm-quantum-roadmap-2025
"Our quantum computing journey". Google Quantum AI. Retrieved 2022-12-13. https://dreamcoat-guggenheim.uc.r.appspot.com/learn/map/