At zero, one has ζ ( 0 ) = B 1 − = − B 1 + = − 1 2 {\displaystyle \zeta (0)={B_{1}^{-}}=-{B_{1}^{+}}=-{\tfrac {1}{2}}\!}
At 1 there is a pole, so ζ(1) is not finite but the left and right limits are: lim ε → 0 ± ζ ( 1 + ε ) = ± ∞ {\displaystyle \lim _{\varepsilon \to 0^{\pm }}\zeta (1+\varepsilon )=\pm \infty } Since it is a pole of first order, it has a complex residue lim ε → 0 ε ζ ( 1 + ε ) = 1 . {\displaystyle \lim _{\varepsilon \to 0}\varepsilon \zeta (1+\varepsilon )=1\,.}
For the even positive integers n {\displaystyle n} , one has the relationship to the Bernoulli numbers B n {\displaystyle B_{n}} :
ζ ( n ) = ( − 1 ) n 2 + 1 ( 2 π ) n B n 2 ( n ! ) . {\displaystyle \zeta (n)=(-1)^{{\tfrac {n}{2}}+1}{\frac {(2\pi )^{n}B_{n}}{2(n!)}}\,.}
The computation of ζ ( 2 ) {\displaystyle \zeta (2)} is known as the Basel problem. The value of ζ ( 4 ) {\displaystyle \zeta (4)} is related to the Stefan–Boltzmann law and Wien approximation in physics. The first few values are given by: ζ ( 2 ) = 1 + 1 2 2 + 1 3 2 + ⋯ = π 2 6 ζ ( 4 ) = 1 + 1 2 4 + 1 3 4 + ⋯ = π 4 90 ζ ( 6 ) = 1 + 1 2 6 + 1 3 6 + ⋯ = π 6 945 ζ ( 8 ) = 1 + 1 2 8 + 1 3 8 + ⋯ = π 8 9450 ζ ( 10 ) = 1 + 1 2 10 + 1 3 10 + ⋯ = π 10 93555 ζ ( 12 ) = 1 + 1 2 12 + 1 3 12 + ⋯ = 691 π 12 638512875 ζ ( 14 ) = 1 + 1 2 14 + 1 3 14 + ⋯ = 2 π 14 18243225 ζ ( 16 ) = 1 + 1 2 16 + 1 3 16 + ⋯ = 3617 π 16 325641566250 . {\displaystyle {\begin{aligned}\zeta (2)&=1+{\frac {1}{2^{2}}}+{\frac {1}{3^{2}}}+\cdots ={\frac {\pi ^{2}}{6}}\\[4pt]\zeta (4)&=1+{\frac {1}{2^{4}}}+{\frac {1}{3^{4}}}+\cdots ={\frac {\pi ^{4}}{90}}\\[4pt]\zeta (6)&=1+{\frac {1}{2^{6}}}+{\frac {1}{3^{6}}}+\cdots ={\frac {\pi ^{6}}{945}}\\[4pt]\zeta (8)&=1+{\frac {1}{2^{8}}}+{\frac {1}{3^{8}}}+\cdots ={\frac {\pi ^{8}}{9450}}\\[4pt]\zeta (10)&=1+{\frac {1}{2^{10}}}+{\frac {1}{3^{10}}}+\cdots ={\frac {\pi ^{10}}{93555}}\\[4pt]\zeta (12)&=1+{\frac {1}{2^{12}}}+{\frac {1}{3^{12}}}+\cdots ={\frac {691\pi ^{12}}{638512875}}\\[4pt]\zeta (14)&=1+{\frac {1}{2^{14}}}+{\frac {1}{3^{14}}}+\cdots ={\frac {2\pi ^{14}}{18243225}}\\[4pt]\zeta (16)&=1+{\frac {1}{2^{16}}}+{\frac {1}{3^{16}}}+\cdots ={\frac {3617\pi ^{16}}{325641566250}}\,.\end{aligned}}}
Taking the limit n → ∞ {\displaystyle n\rightarrow \infty } , one obtains ζ ( ∞ ) = 1 {\displaystyle \zeta (\infty )=1} .
The relationship between zeta at the positive even integers and powers of pi may be written as
a n ζ ( 2 n ) = π 2 n b n {\displaystyle a_{n}\zeta (2n)=\pi ^{2n}b_{n}}
where a n {\displaystyle a_{n}} and b n {\displaystyle b_{n}} are coprime positive integers for all n {\displaystyle n} . These are given by the integer sequences OEIS: A002432 and OEIS: A046988, respectively, in OEIS. Some of these values are reproduced below:
If we let η n = b n / a n {\displaystyle \eta _{n}=b_{n}/a_{n}} be the coefficient of π 2 n {\displaystyle \pi ^{2n}} as above, ζ ( 2 n ) = ∑ ℓ = 1 ∞ 1 ℓ 2 n = η n π 2 n {\displaystyle \zeta (2n)=\sum _{\ell =1}^{\infty }{\frac {1}{\ell ^{2n}}}=\eta _{n}\pi ^{2n}} then we find recursively,
η 1 = 1 / 6 η n = ∑ ℓ = 1 n − 1 ( − 1 ) ℓ − 1 η n − ℓ ( 2 ℓ + 1 ) ! + ( − 1 ) n + 1 n ( 2 n + 1 ) ! {\displaystyle {\begin{aligned}\eta _{1}&=1/6\\\eta _{n}&=\sum _{\ell =1}^{n-1}(-1)^{\ell -1}{\frac {\eta _{n-\ell }}{(2\ell +1)!}}+(-1)^{n+1}{\frac {n}{(2n+1)!}}\end{aligned}}}
This recurrence relation may be derived from that for the Bernoulli numbers.
Also, there is another recurrence:
ζ ( 2 n ) = 1 n + 1 2 ∑ k = 1 n − 1 ζ ( 2 k ) ζ ( 2 n − 2 k ) for n > 1 {\displaystyle \zeta (2n)={\frac {1}{n+{\frac {1}{2}}}}\sum _{k=1}^{n-1}\zeta (2k)\zeta (2n-2k)\quad {\text{ for }}\quad n>1} which can be proved, using that d d x cot ( x ) = − 1 − cot 2 ( x ) {\displaystyle {\frac {d}{dx}}\cot(x)=-1-\cot ^{2}(x)}
The values of the zeta function at non-negative even integers have the generating function: ∑ n = 0 ∞ ζ ( 2 n ) x 2 n = − π x 2 cot ( π x ) = − 1 2 + π 2 6 x 2 + π 4 90 x 4 + π 6 945 x 6 + ⋯ {\displaystyle \sum _{n=0}^{\infty }\zeta (2n)x^{2n}=-{\frac {\pi x}{2}}\cot(\pi x)=-{\frac {1}{2}}+{\frac {\pi ^{2}}{6}}x^{2}+{\frac {\pi ^{4}}{90}}x^{4}+{\frac {\pi ^{6}}{945}}x^{6}+\cdots } Since lim n → ∞ ζ ( 2 n ) = 1 {\displaystyle \lim _{n\rightarrow \infty }\zeta (2n)=1} The formula also shows that for n ∈ N , n → ∞ {\displaystyle n\in \mathbb {N} ,n\rightarrow \infty } , | B 2 n | ∼ ( 2 n ) ! 2 ( 2 π ) 2 n {\displaystyle \left|B_{2n}\right|\sim {\frac {(2n)!\,2}{\;~(2\pi )^{2n}\,}}}
The sum of the harmonic series is infinite. ζ ( 1 ) = 1 + 1 2 + 1 3 + ⋯ = ∞ {\displaystyle \zeta (1)=1+{\frac {1}{2}}+{\frac {1}{3}}+\cdots =\infty \!}
The value ζ(3) is also known as Apéry's constant and has a role in the electron's gyromagnetic ratio. The value ζ(3) also appears in Planck's law. These and additional values are:
It is known that ζ(3) is irrational (Apéry's theorem) and that infinitely many of the numbers ζ(2n + 1) : n ∈ N {\displaystyle \mathbb {N} } , are irrational.1 There are also results on the irrationality of values of the Riemann zeta function at the elements of certain subsets of the positive odd integers; for example, at least one of ζ(5), ζ(7), ζ(9), or ζ(11) is irrational.2
The positive odd integers of the zeta function appear in physics, specifically correlation functions of antiferromagnetic XXX spin chain.3
Most of the identities following below are provided by Simon Plouffe. They are notable in that they converge quite rapidly, giving almost three digits of precision per iteration, and are thus useful for high-precision calculations.
Plouffe stated the following identities without proof.4 Proofs were later given by other authors.5
ζ ( 5 ) = 1 294 π 5 − 72 35 ∑ n = 1 ∞ 1 n 5 ( e 2 π n − 1 ) − 2 35 ∑ n = 1 ∞ 1 n 5 ( e 2 π n + 1 ) ζ ( 5 ) = 12 ∑ n = 1 ∞ 1 n 5 sinh ( π n ) − 39 20 ∑ n = 1 ∞ 1 n 5 ( e 2 π n − 1 ) + 1 20 ∑ n = 1 ∞ 1 n 5 ( e 2 π n + 1 ) {\displaystyle {\begin{aligned}\zeta (5)&={\frac {1}{294}}\pi ^{5}-{\frac {72}{35}}\sum _{n=1}^{\infty }{\frac {1}{n^{5}(e^{2\pi n}-1)}}-{\frac {2}{35}}\sum _{n=1}^{\infty }{\frac {1}{n^{5}(e^{2\pi n}+1)}}\\\zeta (5)&=12\sum _{n=1}^{\infty }{\frac {1}{n^{5}\sinh(\pi n)}}-{\frac {39}{20}}\sum _{n=1}^{\infty }{\frac {1}{n^{5}(e^{2\pi n}-1)}}+{\frac {1}{20}}\sum _{n=1}^{\infty }{\frac {1}{n^{5}(e^{2\pi n}+1)}}\end{aligned}}}
ζ ( 7 ) = 19 56700 π 7 − 2 ∑ n = 1 ∞ 1 n 7 ( e 2 π n − 1 ) {\displaystyle \zeta (7)={\frac {19}{56700}}\pi ^{7}-2\sum _{n=1}^{\infty }{\frac {1}{n^{7}(e^{2\pi n}-1)}}\!}
Note that the sum is in the form of a Lambert series.
By defining the quantities
S ± ( s ) = ∑ n = 1 ∞ 1 n s ( e 2 π n ± 1 ) {\displaystyle S_{\pm }(s)=\sum _{n=1}^{\infty }{\frac {1}{n^{s}(e^{2\pi n}\pm 1)}}}
a series of relationships can be given in the form
0 = a n ζ ( n ) − b n π n + c n S − ( n ) + d n S + ( n ) {\displaystyle 0=a_{n}\zeta (n)-b_{n}\pi ^{n}+c_{n}S_{-}(n)+d_{n}S_{+}(n)}
where an, bn, cn and dn are positive integers. Plouffe gives a table of values:
These integer constants may be expressed as sums over Bernoulli numbers, as given in (Vepstas, 2006) below.
A fast algorithm for the calculation of Riemann's zeta function for any integer argument is given by E. A. Karatsuba.678
In general, for negative integers (and also zero), one has
ζ ( − n ) = ( − 1 ) n B n + 1 n + 1 {\displaystyle \zeta (-n)=(-1)^{n}{\frac {B_{n+1}}{n+1}}}
The so-called "trivial zeros" occur at the negative even integers:
ζ ( − 2 n ) = 0 {\displaystyle \zeta (-2n)=0} (Ramanujan summation)
The first few values for negative odd integers are
ζ ( − 1 ) = − 1 12 ζ ( − 3 ) = 1 120 ζ ( − 5 ) = − 1 252 ζ ( − 7 ) = 1 240 ζ ( − 9 ) = − 1 132 ζ ( − 11 ) = 691 32760 ζ ( − 13 ) = − 1 12 {\displaystyle {\begin{aligned}\zeta (-1)&=-{\frac {1}{12}}\\[4pt]\zeta (-3)&={\frac {1}{120}}\\[4pt]\zeta (-5)&=-{\frac {1}{252}}\\[4pt]\zeta (-7)&={\frac {1}{240}}\\[4pt]\zeta (-9)&=-{\frac {1}{132}}\\[4pt]\zeta (-11)&={\frac {691}{32760}}\\[4pt]\zeta (-13)&=-{\frac {1}{12}}\end{aligned}}}
However, just like the Bernoulli numbers, these do not stay small for increasingly negative odd values. For details on the first value, see 1 + 2 + 3 + 4 + · · ·.
So ζ(m) can be used as the definition of all (including those for index 0 and 1) Bernoulli numbers.
The derivative of the zeta function at the negative even integers is given by
ζ ′ ( − 2 n ) = ( − 1 ) n ( 2 n ) ! 2 ( 2 π ) 2 n ζ ( 2 n + 1 ) . {\displaystyle \zeta ^{\prime }(-2n)=(-1)^{n}{\frac {(2n)!}{2(2\pi )^{2n}}}\zeta (2n+1)\,.}
The first few values of which are
ζ ′ ( − 2 ) = − ζ ( 3 ) 4 π 2 ζ ′ ( − 4 ) = 3 4 π 4 ζ ( 5 ) ζ ′ ( − 6 ) = − 45 8 π 6 ζ ( 7 ) ζ ′ ( − 8 ) = 315 4 π 8 ζ ( 9 ) . {\displaystyle {\begin{aligned}\zeta ^{\prime }(-2)&=-{\frac {\zeta (3)}{4\pi ^{2}}}\\[4pt]\zeta ^{\prime }(-4)&={\frac {3}{4\pi ^{4}}}\zeta (5)\\[4pt]\zeta ^{\prime }(-6)&=-{\frac {45}{8\pi ^{6}}}\zeta (7)\\[4pt]\zeta ^{\prime }(-8)&={\frac {315}{4\pi ^{8}}}\zeta (9)\,.\end{aligned}}}
One also has
ζ ′ ( 0 ) = − 1 2 ln ( 2 π ) ζ ′ ( − 1 ) = 1 12 − ln A ζ ′ ( 2 ) = 1 6 π 2 ( γ + ln 2 − 12 ln A + ln π ) {\displaystyle {\begin{aligned}\zeta ^{\prime }(0)&=-{\frac {1}{2}}\ln(2\pi )\\[4pt]\zeta ^{\prime }(-1)&={\frac {1}{12}}-\ln A\\[4pt]\zeta ^{\prime }(2)&={\frac {1}{6}}\pi ^{2}(\gamma +\ln 2-12\ln A+\ln \pi )\end{aligned}}}
where A is the Glaisher–Kinkelin constant. The first of these identities implies that the regularized product of the reciprocals of the positive integers is 1 / 2 π {\displaystyle 1/{\sqrt {2\pi }}} , thus the amusing "equation" ∞ ! = 2 π {\displaystyle \infty !={\sqrt {2\pi }}} .9
From the logarithmic derivative of the functional equation,
2 ζ ′ ( 1 / 2 ) ζ ( 1 / 2 ) = log ( 2 π ) + π cos ( π / 4 ) 2 sin ( π / 4 ) − Γ ′ ( 1 / 2 ) Γ ( 1 / 2 ) = log ( 2 π ) + π 2 + 2 log 2 + γ . {\displaystyle 2{\frac {\zeta '(1/2)}{\zeta (1/2)}}=\log(2\pi )+{\frac {\pi \cos(\pi /4)}{2\sin(\pi /4)}}-{\frac {\Gamma '(1/2)}{\Gamma (1/2)}}=\log(2\pi )+{\frac {\pi }{2}}+2\log 2+\gamma \,.}
The following sums can be derived from the generating function: ∑ k = 2 ∞ ζ ( k ) x k − 1 = − ψ 0 ( 1 − x ) − γ {\displaystyle \sum _{k=2}^{\infty }\zeta (k)x^{k-1}=-\psi _{0}(1-x)-\gamma } where ψ0 is the digamma function.
∑ k = 2 ∞ ( ζ ( k ) − 1 ) = 1 ∑ k = 1 ∞ ( ζ ( 2 k ) − 1 ) = 3 4 ∑ k = 1 ∞ ( ζ ( 2 k + 1 ) − 1 ) = 1 4 ∑ k = 2 ∞ ( − 1 ) k ( ζ ( k ) − 1 ) = 1 2 {\displaystyle {\begin{aligned}\sum _{k=2}^{\infty }(\zeta (k)-1)&=1\\[4pt]\sum _{k=1}^{\infty }(\zeta (2k)-1)&={\frac {3}{4}}\\[4pt]\sum _{k=1}^{\infty }(\zeta (2k+1)-1)&={\frac {1}{4}}\\[4pt]\sum _{k=2}^{\infty }(-1)^{k}(\zeta (k)-1)&={\frac {1}{2}}\end{aligned}}}
Series related to the Euler–Mascheroni constant (denoted by γ) are ∑ k = 2 ∞ ( − 1 ) k ζ ( k ) k = γ ∑ k = 2 ∞ ζ ( k ) − 1 k = 1 − γ ∑ k = 2 ∞ ( − 1 ) k ζ ( k ) − 1 k = ln 2 + γ − 1 {\displaystyle {\begin{aligned}\sum _{k=2}^{\infty }(-1)^{k}{\frac {\zeta (k)}{k}}&=\gamma \\[4pt]\sum _{k=2}^{\infty }{\frac {\zeta (k)-1}{k}}&=1-\gamma \\[4pt]\sum _{k=2}^{\infty }(-1)^{k}{\frac {\zeta (k)-1}{k}}&=\ln 2+\gamma -1\end{aligned}}}
and using the principal value ζ ( k ) = lim ε → 0 ζ ( k + ε ) + ζ ( k − ε ) 2 {\displaystyle \zeta (k)=\lim _{\varepsilon \to 0}{\frac {\zeta (k+\varepsilon )+\zeta (k-\varepsilon )}{2}}} which of course affects only the value at 1, these formulae can be stated as
∑ k = 1 ∞ ( − 1 ) k ζ ( k ) k = 0 ∑ k = 1 ∞ ζ ( k ) − 1 k = 0 ∑ k = 1 ∞ ( − 1 ) k ζ ( k ) − 1 k = ln 2 {\displaystyle {\begin{aligned}\sum _{k=1}^{\infty }(-1)^{k}{\frac {\zeta (k)}{k}}&=0\\[4pt]\sum _{k=1}^{\infty }{\frac {\zeta (k)-1}{k}}&=0\\[4pt]\sum _{k=1}^{\infty }(-1)^{k}{\frac {\zeta (k)-1}{k}}&=\ln 2\end{aligned}}}
and show that they depend on the principal value of ζ(1) = γ .
Main article: Riemann hypothesis
Zeros of the Riemann zeta except negative even integers are called "nontrivial zeros". The Riemann hypothesis states that the real part of every nontrivial zero must be 1/2. In other words, all known nontrivial zeros of the Riemann zeta are of the form z = 1/2 + yi where y is a real number. The following table contains the decimal expansion of Im(z) for the first few nontrivial zeros:
Andrew Odlyzko computed the first 2 million nontrivial zeros accurate to within 4×10−9, and the first 100 zeros accurate within 1000 decimal places. See their website for the tables and bibliographies.1011 A table of about 103 billion zeros with high precision (of ±2−102≈±2·10−31) is available for interactive access and download (although in a very inconvenient compressed format) via LMFDB.12
Although evaluating particular values of the zeta function is difficult, often certain ratios can be found by inserting particular values of the gamma function into the functional equation
ζ ( s ) = 2 s π s − 1 sin ( π s 2 ) Γ ( 1 − s ) ζ ( 1 − s ) {\displaystyle \zeta (s)=2^{s}\pi ^{s-1}\sin \left({\frac {\pi s}{2}}\right)\Gamma (1-s)\zeta (1-s)}
We have simple relations for half-integer arguments
ζ ( 3 / 2 ) ζ ( − 1 / 2 ) = − 4 π ζ ( 5 / 2 ) ζ ( − 3 / 2 ) = − 16 π 2 3 ζ ( 7 / 2 ) ζ ( − 5 / 2 ) = 64 π 3 15 ζ ( 9 / 2 ) ζ ( − 7 / 2 ) = 256 π 4 105 {\displaystyle {\begin{aligned}{\frac {\zeta (3/2)}{\zeta (-1/2)}}&=-4\pi \\{\frac {\zeta (5/2)}{\zeta (-3/2)}}&=-{\frac {16\pi ^{2}}{3}}\\{\frac {\zeta (7/2)}{\zeta (-5/2)}}&={\frac {64\pi ^{3}}{15}}\\{\frac {\zeta (9/2)}{\zeta (-7/2)}}&={\frac {256\pi ^{4}}{105}}\end{aligned}}}
Other examples follow for more complicated evaluations and relations of the gamma function. For example a consequence of the relation
Γ ( 3 4 ) = ( π 2 ) 1 4 AGM ( 2 , 1 ) 1 2 {\displaystyle \Gamma \left({\tfrac {3}{4}}\right)=\left({\tfrac {\pi }{2}}\right)^{\tfrac {1}{4}}{\operatorname {AGM} \left({\sqrt {2}},1\right)}^{\tfrac {1}{2}}}
is the zeta ratio relation
ζ ( 3 / 4 ) ζ ( 1 / 4 ) = 2 π ( 2 − 2 ) AGM ( 2 , 1 ) {\displaystyle {\frac {\zeta (3/4)}{\zeta (1/4)}}=2{\sqrt {\frac {\pi }{(2-{\sqrt {2}})\operatorname {AGM} \left({\sqrt {2}},1\right)}}}}
where AGM is the arithmetic–geometric mean. In a similar vein, it is possible to form radical relations, such as from
the analogous zeta relation is
ζ ( 1 / 5 ) 2 ζ ( 7 / 10 ) ζ ( 9 / 10 ) ζ ( 1 / 10 ) ζ ( 3 / 10 ) ζ ( 4 / 5 ) 2 = ( 5 − 5 ) ( 10 + 5 + 5 ) 10 ⋅ 2 3 10 {\displaystyle {\frac {\zeta (1/5)^{2}\zeta (7/10)\zeta (9/10)}{\zeta (1/10)\zeta (3/10)\zeta (4/5)^{2}}}={\frac {(5-{\sqrt {5}})\left({\sqrt {10}}+{\sqrt {5+{\sqrt {5}}}}\right)}{10\cdot 2^{\tfrac {3}{10}}}}}
Rivoal, T. (2000). "La fonction zeta de Riemann prend une infinité de valeurs irrationnelles aux entiers impairs". Comptes Rendus de l'Académie des Sciences, Série I. 331 (4): 267–270. arXiv:math/0008051. Bibcode:2000CRASM.331..267R. doi:10.1016/S0764-4442(00)01624-4. S2CID 119678120. /wiki/Tanguy_Rivoal ↩
W. Zudilin (2001). "One of the numbers ζ(5), ζ(7), ζ(9), ζ(11) is irrational". Russ. Math. Surv. 56 (4): 774–776. Bibcode:2001RuMaS..56..774Z. doi:10.1070/rm2001v056n04abeh000427. S2CID 250734661. /wiki/Bibcode_(identifier) ↩
Boos, H.E.; Korepin, V.E.; Nishiyama, Y.; Shiroishi, M. (2002). "Quantum correlations and number theory". J. Phys. A. 35 (20): 4443–4452. arXiv:cond-mat/0202346. Bibcode:2002JPhA...35.4443B. doi:10.1088/0305-4470/35/20/305. S2CID 119143600.. /wiki/ArXiv_(identifier) ↩
"Identities for Zeta(2*n+1)". http://www.plouffe.fr/simon/identities.html ↩
"Formulas for Odd Zeta Values and Powers of Pi". https://cs.uwaterloo.ca/journals/JIS/VOL14/Lopatto/lopatto2.html ↩
Karatsuba, E. A. (1995). "Fast calculation of the Riemann zeta function ζ(s) for integer values of the argument s". Probl. Perdachi Inf. 31 (4): 69–80. MR 1367927. https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=ppi&paperid=294&option_lang=eng ↩
E. A. Karatsuba: Fast computation of the Riemann zeta function for integer argument. Dokl. Math. Vol.54, No.1, p. 626 (1996). ↩
E. A. Karatsuba: Fast evaluation of ζ(3). Probl. Inf. Transm. Vol.29, No.1, pp. 58–62 (1993). ↩
Muñoz García, E.; Pérez Marco, R. (2008), "The Product Over All Primes is 4 π 2 {\displaystyle 4\pi ^{2}} ", Commun. Math. Phys. (277): 69–81. ↩
Odlyzko, Andrew. "Tables of zeros of the Riemann zeta function". Retrieved 7 September 2022. http://www.dtc.umn.edu/~odlyzko/zeta_tables/index.html ↩
Odlyzko, Andrew. "Papers on Zeros of the Riemann Zeta Function and Related Topics". Retrieved 7 September 2022. http://www.dtc.umn.edu/~odlyzko/doc/zeta.html ↩
LMFDB: Zeros of ζ(s) https://www.lmfdb.org/zeros/zeta/ ↩