Several independent observations suggest that the visible mass in galaxies and galaxy clusters is insufficient to account for their dynamics, when analyzed using Newton's laws. This discrepancy – known as the "missing mass problem" – was identified by several observers, most notably by Swiss astronomer Fritz Zwicky in 1933 through his study of the Coma Cluster. This was subsequently extended to include spiral galaxies by the 1939 work of Horace Babcock on Andromeda.
These early studies were augmented and brought to the attention of the astronomical community in the 1960s and 1970s by the work of Vera Rubin, who mapped in detail the rotation velocities of stars in a large sample of spirals. While Newton's Laws predict that stellar rotation velocities should decrease with distance from the galactic centre, Rubin and collaborators found instead that they remain almost constant – the rotation curves are said to be "flat". This observation necessitates at least one of the following:
Option (1) leads to the dark matter hypothesis; option (2) leads to MOND.
The basic premise of MOND is that while Newton's laws have been extensively tested in high-acceleration environments (in the Solar System and on Earth), they have not been verified for objects with extremely low acceleration, such as stars in the outer parts of galaxies. This led Milgrom to postulate a new effective gravitational force law (sometimes referred to as "Milgrom's law") that relates the true acceleration of an object to the acceleration that would be predicted for it on the basis of Newtonian mechanics. This law, the keystone of MOND, is chosen to reproduce the Newtonian result at high acceleration but leads to different ("deep-MOND") behavior at low acceleration:
Beyond these limits, the interpolating function is not specified by the hypothesis.
Milgrom's law uses an interpolation function to join its two limits together. It represents a simple algorithm to convert Newtonian gravitational accelerations to observed kinematic accelerations and vice versa. Many functions have been proposed in the literature although currently there is no single interpolation function that satisfies all constraints. Two common choices are the "simple interpolating function" and the "standard interpolating function". Each has a
μ
{\displaystyle \mu }
and a
ν
{\displaystyle \nu }
direction to convert the Milgromian gravitational field to the Newtonian and vice versa such that:
a
N
=
μ
(
a
M
a
0
)
a
M
,
{\displaystyle a_{N}=\mu \left({\frac {a_{M}}{a_{0}}}\right)a_{M}~,}
a
M
=
ν
(
a
0
a
N
)
a
N
.
{\displaystyle a_{M}=\nu \left({\frac {a_{0}}{a_{N}}}\right)a_{N}~.}
Data from spiral and elliptical galaxies favour the simple interpolation function, whereas data from lunar laser ranging and radio tracking data of the Cassini spacecraft towards Saturn require interpolation functions that converge to Newtonian gravity faster.
Milgrom's law requires incorporation into a complete hypothesis if it is to satisfy conservation laws and provide a unique solution for the time evolution of any physical system. Each of the theories described here reduce to Milgrom's law in situations of high symmetry, but produce different behavior in detail.
Both AQUAL and QUMOND propose changes to the gravitational part of the classical matter action, and hence interpret Milgrom's law as a modification of Newtonian gravity as opposed to Newton's second law. The alternative is to turn the kinetic term of the action into a functional depending on the trajectory of the particle. Such "modified inertia" theories, however, are difficult to use because they are time-nonlocal, require energy and momentum to be non-trivially redefined to be conserved, and have predictions that depend on the entirety of a particle's orbit.
The first hypothesis of MOND (dubbed AQUAL, for "A QUAdratic Lagrangian") was constructed in 1984 by Milgrom and Jacob Bekenstein. AQUAL generates MONDian behavior by modifying the gravitational term in the classical Lagrangian from being quadratic in the gradient of the Newtonian potential to a more general function F. This function F reduces to the
μ
{\displaystyle \mu }
-version of the interpolation function after varying the over
ϕ
{\displaystyle \phi }
using the principle of least action. In Newtonian gravity and AQUAL the Lagrangians are:
L
Newton
=
−
1
8
π
G
⋅
‖
∇
ϕ
‖
2
L
AQUAL
=
−
1
8
π
G
⋅
a
0
2
F
(
‖
∇
ϕ
‖
2
a
0
2
)
,
with
μ
(
x
)
=
d
F
(
x
2
)
d
x
.
{\displaystyle {\begin{aligned}{\mathcal {L}}_{\text{Newton}}&=-{\frac {1}{8\pi G}}\cdot \|\nabla \phi \|^{2}\\[6pt]{\mathcal {L}}_{\text{AQUAL}}&=-{\frac {1}{8\pi G}}\cdot a_{0}^{2}F\left({\tfrac {\|\nabla \phi \|^{2}}{a_{0}^{2}}}\right),\qquad {\text{with }}\quad \mu (x)={\frac {dF(x^{2})}{dx}}.\end{aligned}}}
where
ϕ
{\displaystyle \phi }
is the standard Newtonian gravitational potential and F is a new dimensionless function. Applying the Euler–Lagrange equations in the standard way then leads to a non-linear generalization of the Newton–Poisson equation:
∇
⋅
[
μ
(
‖
∇
ϕ
‖
a
0
)
∇
ϕ
]
=
4
π
G
ρ
{\displaystyle \nabla \cdot \left[\mu \left({\frac {\left\|\nabla \phi \right\|}{a_{0}}}\right)\nabla \phi \right]=4\pi G\rho }
This can be solved given suitable boundary conditions and choice of F to yield Milgrom's law (up to a curl field correction which vanishes in situations of high symmetry). AQUAL uses the
μ
{\displaystyle \mu }
-version of the chosen interpolation function.
An alternative way to modify the gravitational term in the Lagrangian is to introduce a distinction between the true (MONDian) acceleration field a and the Newtonian acceleration field aN. The Lagrangian may be constructed so that aN satisfies the usual Newton-Poisson equation, and is then used to find a via an additional algebraic but non-linear step, which is chosen to satisfy Milgrom's law. This is called the "quasi-linear formulation of MOND", or QUMOND, and is particularly useful for calculating the distribution of "phantom" dark matter that would be inferred from a Newtonian analysis of a given physical situation. QUMOND has become the dominant MOND field theory since it was first formulated in 2010 because it is much more computationally friendly and may be more intuitive to those who have worked on numerical simulations of Newtonian gravity. QUMOND uses the
ν
{\displaystyle \nu }
-version of the chosen interpolation function. QUMOND and AQUAL can be derived from each other using a Legendre transform. The QUMOND Lagrangian is:
L
QUMOND
=
1
2
ρ
v
2
−
ρ
ϕ
−
1
8
π
G
(
2
∇
ϕ
⋅
∇
ϕ
N
−
a
0
2
Q
(
(
a
0
/
∇
ϕ
N
)
2
)
)
{\displaystyle {\begin{aligned}{\mathcal {L}}_{\text{QUMOND}}={\frac {1}{2}}\rho v^{2}-\rho \phi -{\frac {1}{8\pi G}}\left(2\nabla \phi \cdot \nabla \phi _{N}-a_{0}^{2}Q\left((a_{0}/\nabla \phi _{N})^{2}\right)\right)\end{aligned}}}
Since this Lagrangian does not explicitly depend on time and is invariant under spatial translations this means energy and momentum are conserved according to Noether's theorem. Varying over r yields
m
a
=
m
g
{\displaystyle ma=mg}
showing that the weak equivalence principle always applies in QUMOND. However, since
ϕ
{\displaystyle \phi }
and
ϕ
N
{\displaystyle \phi _{N}}
are not identical and are non-linearly related this means that the strong equivalence principle must be violated. This can be observed by measuring the external field effect. Furthermore, by varying over
ϕ
{\displaystyle \phi }
we get the following Newton-Poisson equation familiar from Newtonian gravity but now with a subscript to denote that in QUMOND this equation determines the auxiliary gravitational field
ϕ
N
{\displaystyle \phi _{N}}
:
∇
2
ϕ
N
=
4
π
G
ρ
.
{\displaystyle \nabla ^{2}\phi _{N}=4\pi G\rho .}
Finally by varying the QUMOND Lagrangian with respect to
ϕ
N
{\displaystyle \phi _{N}}
we get the QUMOND field equation:
∇
2
ϕ
=
∇
⋅
[
ν
(
a
0
‖
∇
ϕ
N
‖
)
∇
ϕ
N
]
{\displaystyle \nabla ^{2}\phi =\nabla \cdot \left[\nu \left({\frac {a_{0}}{\left\|\nabla \phi _{N}\right\|}}\right)\nabla \phi _{N}\right]}
These two field equations can be solved numerically for any matter distribution with numerical solvers like Phantom of RAMSES (POR).
In Newtonian mechanics, an object's acceleration can be found as the vector sum of the acceleration due to each of the individual forces acting on it. This means that a subsystem can be decoupled from the larger system in which it is embedded simply by referring the motion of its constituent particles to their centre of mass; in other words, the influence of the larger system is irrelevant for the internal dynamics of the subsystem. Since Milgrom's law is non-linear in acceleration, MONDian subsystems cannot be decoupled from their environment in this way, and in certain situations this leads to behaviour with no Newtonian parallel. This is known as the "external field effect" (EFE), for which there exists observational evidence.
The external field effect is best described by classifying physical systems according to their relative values of ain (the characteristic acceleration of one object within a subsystem due to the influence of another), aex (the acceleration of the entire subsystem due to forces exerted by objects outside of it), and a0:
The dependence in MOND of the internal dynamics of a system on its external environment (in principle, the rest of the universe) is strongly reminiscent of Mach's principle, and may hint towards a more fundamental structure underlying Milgrom's law. In this regard, Milgrom has commented:
Since MOND was specifically designed to produce flat rotation curves, these do not constitute evidence for the hypothesis, but every matching observation adds to support of the empirical law. Nevertheless, proponents claim that a broad range of astrophysical phenomena at the galactic scale are neatly accounted for within the MOND framework. Many of these came to light after the publication of Milgrom's original papers and are difficult to explain using the dark matter hypothesis. The most prominent are the following:
While acknowledging that Milgrom's law provides a succinct and accurate description of a range of galactic phenomena, many physicists reject the idea that classical dynamics itself needs to be modified and attempt instead to explain the law's success by reference to the behavior of dark matter. Some effort has gone towards establishing the presence of a characteristic acceleration scale as a natural consequence of the behavior of cold dark matter halos, although Milgrom has argued that such arguments explain only a small subset of MOND phenomena. An alternative proposal is to ad hoc modify the properties of dark matter (e.g., to make it interact strongly with itself or baryons) in order to induce the tight coupling between the baryonic and dark matter mass that the observations point to. Finally, some researchers suggest that explaining the empirical success of Milgrom's law requires a more radical break with conventional assumptions about the nature of dark matter. One idea (dubbed "dipolar dark matter") is to make dark matter gravitationally polarizable by ordinary matter and have this polarization enhance the gravitational attraction between baryons.
The most serious problem facing Milgrom's law is that galaxy clusters show a residual mass discrepancy even when analyzed using MOND. This problem is long standing and has been dubbed the "cluster conundrum". This undermines MOND as an alternative to dark matter, although the amount of extra mass required is only a fifth that of a Newtonian analysis and could be in the form of normal matter. It has been speculated that ~2 eV neutrinos could account for the cluster observations in MOND while preserving the hypothesis's successes at the galaxy scale. Analysis of lensing data for the galaxy cluster Abell 1689 shows that this residual missing mass problem in MOND becomes more severe towards the cores of galaxy clusters.
Besides these observational issues, MOND and its relativistic generalizations are plagued by theoretical difficulties. Several ad hoc and inelegant additions to general relativity are required to create a theory compatible with a non-Newtonian non-relativistic limit, though the predictions in this limit are rather clear.
Several newer relativistic generalizations of MOND exist, including BIMOND and generalized Einstein aether theory. There is also a relativistic generalization of MOND that assumes a Lorentz-type invariance as the physical basis of MOND phenomenology. Recently Skordis and Złośnik proposed a relativistic model of MOND that is compatible with cosmic microwave background observations, the matter power spectrum and the speed of gravity.
It has been claimed that MOND is generally unsuited to forming the basis of cosmology. A significant piece of evidence in favor of standard dark matter is the observed anisotropies in the cosmic microwave background. While ΛCDM is able to explain the observed angular power spectrum, MOND has a much harder time. It is possible to construct relativistic generalizations of MOND that can fit CMB observations, but it requires terms that do not look natural, and several observations (such as the amount of gravitational lensing) are still difficult to explain. MOND also encounters difficulties explaining structure formation, with density perturbations in MOND perhaps growing so rapidly that too much structure is formed by the present epoch. However, galaxy surveys appear to show massive galaxy formation occurring at much greater rapidity early in time than is possible according to ΛCDM.
There is a potential link between MOND and cosmology. It has been noted that the value of a0 is within an order of magnitude of cH0, where c is the speed of light and H0 is the Hubble constant (a measure of the present-day expansion rate of the universe). It is also close to the acceleration rate of the universe through
Λ
c
2
{\displaystyle {\sqrt {\Lambda }}c^{2}}
, where Λ is the cosmological constant. Recent work on a transactional formulation of entropic gravity by Schlatter and Kastner suggests a natural connection between a0, H0, and the cosmological constant.
Several observational and experimental tests have been proposed to help distinguish between MOND and dark matter-based models:
Keith Cooper (6 February 2024). "Cosmic combat: delving into the battle between dark matter and modified gravity". physicsworld. https://physicsworld.com/a/cosmic-combat-delving-into-the-battle-between-dark-matter-and-modified-gravity
Ethan Siegel (19 October 2022). "Why modifying gravity doesn't add up". /wiki/Ethan_Siegel
Milgrom, M. (1983). "A modification of the Newtonian dynamics as an alternative to the hidden mass hypothesis". Astrophysical Journal. 270: 365–370. Bibcode:1983ApJ...270..365M. doi:10.1086/161130.. Milgrom, M. (1983). "A modification of the Newtonian dynamics - Implications for galaxies". Astrophysical Journal. 270: 371–383. Bibcode:1983ApJ...270..371M. doi:10.1086/161131.. Milgrom, M. (1983). "A modification of the Newtonian dynamics - Implications for galaxy systems". Astrophysical Journal. 270: 384–389. Bibcode:1983ApJ...270..384M. doi:10.1086/161132.. https://doi.org/10.1086%2F161130
Jacob Bekenstein & M. Milgrom (1984). "Does the missing mass problem signal the breakdown of Newtonian gravity?". Astrophys. J. 286: 7–14. Bibcode:1984ApJ...286....7B. doi:10.1086/162570. /wiki/Bibcode_(identifier)
Milgrom, Mordehai (February 2015). "MOND theory". Canadian Journal of Physics. 93 (2): 107–118. arXiv:1404.7661. Bibcode:2015CaJPh..93..107M. doi:10.1139/cjp-2014-0211. ISSN 0008-4204. http://www.nrcresearchpress.com/doi/10.1139/cjp-2014-0211
Katherine Brown; Harsh Mathur (22 September 2023). "Modified Newtonian Dynamics as an Alternative to the Planet Nine Hypothesis". The Astronomical Journal. 166 (4): 168 ff. arXiv:2304.00576. Bibcode:2023AJ....166..168B. doi:10.3847/1538-3881/acef1e. https://doi.org/10.3847%2F1538-3881%2Facef1e
McGaugh, S. (2015). "A Tale of Two Paradigms: the Mutual Incommensurability of LCDM and MOND". Canadian Journal of Physics. 93 (2): 250–259. arXiv:1404.7525. Bibcode:2015CaJPh..93..250M. doi:10.1139/cjp-2014-0203. S2CID 51822163. /wiki/ArXiv_(identifier)
Kroupa, P.; Pawlowski, M.; Milgrom, M. (2012). "The failures of the standard model of cosmology require a new paradigm". International Journal of Modern Physics. 21 (14): 1230003. arXiv:1301.3907. Bibcode:2012IJMPD..2130003K. doi:10.1142/S0218271812300030. S2CID 118461811. /wiki/ArXiv_(identifier)
Chae, Kyu-Hyun; Lelli, Federico; Desmond, Harry; McGaugh, Stacy S.; Li, Pengfei; Schombert, James M. (2020-11-01). "Testing the Strong Equivalence Principle: Detection of the External Field Effect in Rotationally Supported Galaxies". The Astrophysical Journal. 904 (1): 51. arXiv:2009.11525. Bibcode:2020ApJ...904...51C. doi:10.3847/1538-4357/abbb96. ISSN 0004-637X. https://doi.org/10.3847%2F1538-4357%2Fabbb96
Müller, Oliver; Pawlowski, Marcel S.; Jerjen, Helmut; Lelli, Federico (2018-02-02). "A whirling plane of satellite galaxies around Centaurus A challenges cold dark matter cosmology" (PDF). Science. 359 (6375): 534–537. arXiv:1802.00081. Bibcode:2018Sci...359..534M. doi:10.1126/science.aao1858. ISSN 0036-8075. PMID 29420285. Retrieved 2025-02-28. https://science.sciencemag.org/content/sci/359/6375/534.full.pdf
McGaugh, S. (2015). "A Tale of Two Paradigms: the Mutual Incommensurability of LCDM and MOND". Canadian Journal of Physics. 93 (2): 250–259. arXiv:1404.7525. Bibcode:2015CaJPh..93..250M. doi:10.1139/cjp-2014-0203. S2CID 51822163. /wiki/ArXiv_(identifier)
Mordehai, M. (2014) "The MOND paradigm of modified dynamics". Scholarpedia, 9(6):31410. http://www.scholarpedia.org/article/The_MOND_paradigm_of_modified_dynamics#Galaxy_clusters
Hodson, A.O.; Zhao, H. (2017). "Generalizing MOND to explain the missing mass in galaxy clusters". Astronomy & Astrophysics. 598 (A127): 127. arXiv:1701.03369. Bibcode:2017A&A...598A.127H. doi:10.1051/0004-6361/201629358. /wiki/ArXiv_(identifier)
Keith Cooper (6 February 2024). "Cosmic combat: delving into the battle between dark matter and modified gravity". physicsworld. https://physicsworld.com/a/cosmic-combat-delving-into-the-battle-between-dark-matter-and-modified-gravity
Skordis, Constantinos; Złośnik, Tom (2021-10-15). "New Relativistic Theory for Modified Newtonian Dynamics". Physical Review Letters. 127 (16): 161302. arXiv:2007.00082. Bibcode:2021PhRvL.127p1302S. doi:10.1103/PhysRevLett.127.161302. ISSN 0031-9007. PMID 34723619. https://doi.org/10.1103%2FPhysRevLett.127.161302
Zwicky, F. (1933). "Die Rotverschiebung von extragalaktischen Nebeln". Helvetica Physica Acta. 6: 110–127. Bibcode:1933AcHPh...6..110Z. /wiki/Bibcode_(identifier)
Zwicky, F. (1937). "On the masses of nebulae and of clusters of nebulae". The Astrophysical Journal. 86: 217. Bibcode:1937ApJ....86..217Z. doi:10.1086/143864. https://doi.org/10.1086%2F143864
Babcock, H. (1939). "The rotation of the Andromeda Nebula". Lick Observatory Bulletin. 498 (498): 41. Bibcode:1939LicOB..19...41B. doi:10.5479/ADS/bib/1939LicOB.19.41B. https://doi.org/10.5479%2FADS%2Fbib%2F1939LicOB.19.41B
Rubin, Vera C.; Ford, W. Kent Jr. (February 1970). "Rotation of the Andromeda Nebula from a spectroscopic survey of emission regions". The Astrophysical Journal. 159: 379–403. Bibcode:1970ApJ...159..379R. doi:10.1086/150317. S2CID 122756867. /wiki/Vera_Rubin
Bertone, Gianfranco; Hooper, Dan (2018). "History of dark matter". Reviews of Modern Physics. 90 (4). American Physical Society: 045002. arXiv:1605.04909. Bibcode:2018RvMP...90d5002B. doi:10.1103/RevModPhys.90.045002. S2CID 18596513. /wiki/ArXiv_(identifier)
McGaugh, S. (2015). "A Tale of Two Paradigms: the Mutual Incommensurability of LCDM and MOND". Canadian Journal of Physics. 93 (2): 250–259. arXiv:1404.7525. Bibcode:2015CaJPh..93..250M. doi:10.1139/cjp-2014-0203. S2CID 51822163. /wiki/ArXiv_(identifier)
Sanders, R.H. (2014). "A historical perspective on modified Newtonian dynamics". Canadian Journal of Physics. 93 (2): 126–138. arXiv:1404.0531. Bibcode:2015CaJPh..93..126S. doi:10.1139/cjp-2014-0206. S2CID 119240769. /wiki/ArXiv_(identifier)
Milgrom, M. (1983). "A modification of the Newtonian dynamics as an alternative to the hidden mass hypothesis". Astrophysical Journal. 270: 365–370. Bibcode:1983ApJ...270..365M. doi:10.1086/161130.. Milgrom, M. (1983). "A modification of the Newtonian dynamics - Implications for galaxies". Astrophysical Journal. 270: 371–383. Bibcode:1983ApJ...270..371M. doi:10.1086/161131.. Milgrom, M. (1983). "A modification of the Newtonian dynamics - Implications for galaxy systems". Astrophysical Journal. 270: 384–389. Bibcode:1983ApJ...270..384M. doi:10.1086/161132.. https://doi.org/10.1086%2F161130
Milgrom, M. (2011). "MOND – Particularly as modified inertia". Acta Physica Polonica B. 42 (11): 2175. arXiv:1111.1611. doi:10.5506/APhysPolB.42.2175. S2CID 119272458. /wiki/ArXiv_(identifier)
Gundlach, J. H.; Schlamminger, S.; Spitzer, C. D.; Choi, K.-Y.; Woodahl, B. A.; Coy, J. J.; Fischbach, E. (2007-04-13). "Laboratory Test of Newton's Second Law for Small Accelerations". Physical Review Letters. 98 (15): 150801. Bibcode:2007PhRvL..98o0801G. doi:10.1103/PhysRevLett.98.150801. ISSN 0031-9007. PMID 17501332. Retrieved 2025-02-26. https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=2657&context=physics_articles
Begeman, K. G.; Broeils, A. H.; Sanders, R. H. (1991-04-01). "Extended rotation curves of spiral galaxies: dark haloes and modified dynamics" (PDF). Monthly Notices of the Royal Astronomical Society. 249 (3): 523–537. doi:10.1093/mnras/249.3.523. ISSN 0035-8711. Retrieved 2025-02-22. https://academic.oup.com/mnras/article-pdf/249/3/523/18160929/mnras249-0523.pdf
Sanders, Robert H.; McGaugh, Stacy S. (2002). "Modified Newtonian Dynamics as an Alternative to Dark Matter". Annual Review of Astronomy and Astrophysics. 40 (1): 263–317. arXiv:astro-ph/0204521. Bibcode:2002ARA&A..40..263S. doi:10.1146/annurev.astro.40.060401.093923. ISSN 0066-4146. Retrieved 2025-04-08. https://www.annualreviews.org/doi/10.1146/annurev.astro.40.060401.093923
McGaugh, Stacy S. (2011-03-21). "Novel Test of Modified Newtonian Dynamics with Gas Rich Galaxies". Physical Review Letters. 106 (12): 121303. arXiv:1102.3913. Bibcode:2011PhRvL.106l1303M. doi:10.1103/PhysRevLett.106.121303. ISSN 0031-9007. PMID 21517295. https://doi.org/10.1103%2FPhysRevLett.106.121303
McGaugh, Stacy S. (2016-11-20). "Mond Prediction for the Velocity Dispersion of the "Feeble Giant" Crater II". The Astrophysical Journal Letters. 832 (1): L8. arXiv:1610.06189. Bibcode:2016ApJ...832L...8M. doi:10.3847/2041-8205/832/1/L8. ISSN 2041-8205. https://doi.org/10.3847%2F2041-8205%2F832%2F1%2FL8
Li, Pengfei; Lelli, Federico; McGaugh, Stacy; Schombert, James (2018). "Fitting the radial acceleration relation to individual SPARC galaxies" (PDF). Astronomy & Astrophysics. 615: A3. arXiv:1803.00022. Bibcode:2018A&A...615A...3L. doi:10.1051/0004-6361/201732547. ISSN 0004-6361. Retrieved 2025-04-08. https://www.aanda.org/articles/aa/pdf/2018/07/aa32547-17.pdf
Famaey, B.; McGaugh, S. (2012). "Modified Newtonian dynamics (MOND): Observational phenomenology and relativistic extensions". Living Reviews in Relativity. 15 (1): 10. arXiv:1112.3960. Bibcode:2012LRR....15...10F. doi:10.12942/lrr-2012-10. PMC 5255531. PMID 28163623. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5255531
Hees, A.; Folkner, W. M.; Jacobson, R. A.; Park, R. S. (2014-05-13). "Constraints on modified Newtonian dynamics theories from radio tracking data of the Cassini spacecraft". Physical Review D. 89 (10): 102002. arXiv:1402.6950. Bibcode:2014PhRvD..89j2002H. doi:10.1103/PhysRevD.89.102002. ISSN 1550-7998. https://doi.org/10.1103%2FPhysRevD.89.102002
Famaey, B.; McGaugh, S. (2012). "Modified Newtonian dynamics (MOND): Observational phenomenology and relativistic extensions". Living Reviews in Relativity. 15 (1): 10. arXiv:1112.3960. Bibcode:2012LRR....15...10F. doi:10.12942/lrr-2012-10. PMC 5255531. PMID 28163623. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5255531
Gentile, G.; Famaey, B.; de Blok, W.J.G. (2011). "THINGS about MOND". Astronomy & Astrophysics. 527 (A76): A76. arXiv:1011.4148. Bibcode:2011A&A...527A..76G. doi:10.1051/0004-6361/201015283. S2CID 73653467. /wiki/ArXiv_(identifier)
Famaey, B.; Binney, J. (2005). "Modified Newtonian dynamics in the Milky Way". Monthly Notices of the Royal Astronomical Society. 363 (2): 603–608. arXiv:astro-ph/0506723. Bibcode:2005MNRAS.363..603F. doi:10.1111/j.1365-2966.2005.09474.x. S2CID 150557. https://doi.org/10.1111%2Fj.1365-2966.2005.09474.x
Hees, A.; Folkner, W. M.; Jacobson, R. A.; Park, R. S. (2014-05-13). "Constraints on modified Newtonian dynamics theories from radio tracking data of the Cassini spacecraft". Physical Review D. 89 (10): 102002. arXiv:1402.6950. Bibcode:2014PhRvD..89j2002H. doi:10.1103/PhysRevD.89.102002. ISSN 1550-7998. https://doi.org/10.1103%2FPhysRevD.89.102002
Exirifard, Qasem (2013). "Lunar System Constraints on the Modified Theories of Gravity". International Journal of Modern Physics D. 22 (9): 1350064. arXiv:1112.4652. Bibcode:2013IJMPD..2250064E. doi:10.1142/S0218271813500648. ISSN 0218-2718. https://doi.org/10.1142%2FS0218271813500648
Felten, J. E. (1984). "Milgrom's revision of Newton's laws - Dynamical and cosmological consequences". The Astrophysical Journal. 286: 3. Bibcode:1984ApJ...286....3F. doi:10.1086/162569. ISSN 0004-637X. https://doi.org/10.1086%2F162569
Famaey, B.; McGaugh, S. (2012). "Modified Newtonian dynamics (MOND): Observational phenomenology and relativistic extensions". Living Reviews in Relativity. 15 (1): 10. arXiv:1112.3960. Bibcode:2012LRR....15...10F. doi:10.12942/lrr-2012-10. PMC 5255531. PMID 28163623. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5255531
Jacob Bekenstein & M. Milgrom (1984). "Does the missing mass problem signal the breakdown of Newtonian gravity?". Astrophys. J. 286: 7–14. Bibcode:1984ApJ...286....7B. doi:10.1086/162570. /wiki/Bibcode_(identifier)
Milgrom, Mordehai (2010). "Quasi-linear formulation of MOND". Monthly Notices of the Royal Astronomical Society. 403 (2): 886–895. arXiv:0911.5464. Bibcode:2010MNRAS.403..886M. doi:10.1111/j.1365-2966.2009.16184.x. S2CID 119305157. https://doi.org/10.1111%2Fj.1365-2966.2009.16184.x
Famaey, B.; McGaugh, S. (2012). "Modified Newtonian dynamics (MOND): Observational phenomenology and relativistic extensions". Living Reviews in Relativity. 15 (1): 10. arXiv:1112.3960. Bibcode:2012LRR....15...10F. doi:10.12942/lrr-2012-10. PMC 5255531. PMID 28163623. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5255531
Banik, Indranil; Zhao, Hongsheng (2022-06-27). "From Galactic Bars to the Hubble Tension: Weighing Up the Astrophysical Evidence for Milgromian Gravity". Symmetry. 14 (7): 1331. arXiv:2110.06936. Bibcode:2022Symm...14.1331B. doi:10.3390/sym14071331. ISSN 2073-8994. https://doi.org/10.3390%2Fsym14071331
Milgrom, Mordehai (2012-05-21). "Practically linear analogs of the Born-Infeld and other nonlinear theories". Physical Review D. 85 (10): 105018. arXiv:1204.2683. Bibcode:2012PhRvD..85j5018M. doi:10.1103/PhysRevD.85.105018. ISSN 1550-7998. https://doi.org/10.1103%2FPhysRevD.85.105018
Milgrom, Mordehai (2010). "Quasi-linear formulation of MOND". Monthly Notices of the Royal Astronomical Society. 403 (2): 886–895. arXiv:0911.5464. Bibcode:2010MNRAS.403..886M. doi:10.1111/j.1365-2966.2009.16184.x. S2CID 119305157. https://doi.org/10.1111%2Fj.1365-2966.2009.16184.x
Milgrom, Mordehai (2010). "Quasi-linear formulation of MOND". Monthly Notices of the Royal Astronomical Society. 403 (2): 886–895. arXiv:0911.5464. Bibcode:2010MNRAS.403..886M. doi:10.1111/j.1365-2966.2009.16184.x. S2CID 119305157. https://doi.org/10.1111%2Fj.1365-2966.2009.16184.x
Lüghausen, Fabian; Famaey, Benoit; Kroupa, Pavel (2015). "Phantom of RAMSES (POR): A new Milgromian dynamics N -body code". Canadian Journal of Physics. 93 (2): 232–241. arXiv:1405.5963. Bibcode:2015CaJPh..93..232L. doi:10.1139/cjp-2014-0168. ISSN 0008-4204. https://doi.org/10.1139%2Fcjp-2014-0168
Milgrom, M. (1983). "A modification of the Newtonian dynamics as an alternative to the hidden mass hypothesis". Astrophysical Journal. 270: 365–370. Bibcode:1983ApJ...270..365M. doi:10.1086/161130.. Milgrom, M. (1983). "A modification of the Newtonian dynamics - Implications for galaxies". Astrophysical Journal. 270: 371–383. Bibcode:1983ApJ...270..371M. doi:10.1086/161131.. Milgrom, M. (1983). "A modification of the Newtonian dynamics - Implications for galaxy systems". Astrophysical Journal. 270: 384–389. Bibcode:1983ApJ...270..384M. doi:10.1086/161132.. https://doi.org/10.1086%2F161130
Chae, Kyu-Hyun; Lelli, Federico; Desmond, Harry; McGaugh, Stacy S.; Li, Pengfei; Schombert, James M. (2020). "Testing the Strong Equivalence Principle: Detection of the External Field Effect in Rotationally Supported Galaxies". The Astrophysical Journal. 904 (1): 51. arXiv:2009.11525. Bibcode:2020ApJ...904...51C. doi:10.3847/1538-4357/abbb96. S2CID 221879077. https://doi.org/10.3847%2F1538-4357%2Fabbb96
S. McGaugh, The EFE in MOND Archived 2017-07-16 at the Wayback Machine http://astroweb.case.edu/ssm/mond/EFE.html
Jacob Bekenstein & M. Milgrom (1984). "Does the missing mass problem signal the breakdown of Newtonian gravity?". Astrophys. J. 286: 7–14. Bibcode:1984ApJ...286....7B. doi:10.1086/162570. /wiki/Bibcode_(identifier)
Milgrom, Mordehai (2010). "Quasi-linear formulation of MOND". Monthly Notices of the Royal Astronomical Society. 403 (2): 886–895. arXiv:0911.5464. Bibcode:2010MNRAS.403..886M. doi:10.1111/j.1365-2966.2009.16184.x. S2CID 119305157. https://doi.org/10.1111%2Fj.1365-2966.2009.16184.x
Milgrom, Mordehai (2008). "The MOND paradigm". arXiv:0801.3133 [astro-ph]. /wiki/ArXiv_(identifier)
Famaey, B.; McGaugh, S. (2012). "Modified Newtonian dynamics (MOND): Observational phenomenology and relativistic extensions". Living Reviews in Relativity. 15 (1): 10. arXiv:1112.3960. Bibcode:2012LRR....15...10F. doi:10.12942/lrr-2012-10. PMC 5255531. PMID 28163623. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5255531
Milgrom, Mordehai (2014). "MOND laws of galactic dynamics". Monthly Notices of the Royal Astronomical Society. 437 (3): 2531–2541. arXiv:1212.2568. Bibcode:2014MNRAS.437.2531M. doi:10.1093/mnras/stt2066. S2CID 118840212. https://doi.org/10.1093%2Fmnras%2Fstt2066
McGaugh, S. S.; Schombert, J. M.; Bothun, G. D.; De Blok, W. J. G. (2000). "The Baryonic Tully–Fisher Relation". The Astrophysical Journal. 533 (2): L99 – L102. arXiv:astro-ph/0003001. Bibcode:2000ApJ...533L..99M. doi:10.1086/312628. PMID 10770699. S2CID 103865. /wiki/ArXiv_(identifier)
McGaugh, Stacy S. (2012). "The Baryonic Tully–Fisher Relation of Gas-Rich Galaxies as a Test of Λcdm and Mond". The Astronomical Journal. 143 (2): 40. arXiv:1107.2934. Bibcode:2012AJ....143...40M. doi:10.1088/0004-6256/143/2/40. S2CID 38472632. /wiki/ArXiv_(identifier)
Famaey, B.; McGaugh, S. (2012). "Modified Newtonian dynamics (MOND): Observational phenomenology and relativistic extensions". Living Reviews in Relativity. 15 (1): 10. arXiv:1112.3960. Bibcode:2012LRR....15...10F. doi:10.12942/lrr-2012-10. PMC 5255531. PMID 28163623. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5255531
Famaey, B.; McGaugh, S. (2012). "Modified Newtonian dynamics (MOND): Observational phenomenology and relativistic extensions". Living Reviews in Relativity. 15 (1): 10. arXiv:1112.3960. Bibcode:2012LRR....15...10F. doi:10.12942/lrr-2012-10. PMC 5255531. PMID 28163623. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5255531
Sanders, R. H. (1990). "Mass discrepancies in galaxies: dark matter and alternatives". The Astronomy and Astrophysics Review. 2 (1): 1–28. Bibcode:1990A&ARv...2....1S. doi:10.1007/BF00873540. ISSN 0935-4956. /wiki/Bibcode_(identifier)
McGaugh, Stacy S. (2004). "The Mass Discrepancy–Acceleration Relation: Disk Mass and the Dark Matter Distribution". The Astrophysical Journal. 609 (2): 652–666. arXiv:astro-ph/0403610. Bibcode:2004ApJ...609..652M. doi:10.1086/421338. S2CID 9544873. /wiki/ArXiv_(identifier)
McGaugh, S. (2015). "A Tale of Two Paradigms: the Mutual Incommensurability of LCDM and MOND". Canadian Journal of Physics. 93 (2): 250–259. arXiv:1404.7525. Bibcode:2015CaJPh..93..250M. doi:10.1139/cjp-2014-0203. S2CID 51822163. /wiki/ArXiv_(identifier)
Romanowsky, A.J.; Douglas, N.G.; Arnaboldi, M.; Kuijken, K.; Merrifield, M.R.; Napolitano, N.R.; Capaccioli, M.; Freeman, K.C. (2003). "A Dearth of Dark Matter in Ordinary Elliptical Galaxies". Science. 301 (5640): 1696–1698. arXiv:astro-ph/0308518. Bibcode:2003Sci...301.1696R. doi:10.1126/science.1087441. PMID 12947033. S2CID 120137872. /wiki/ArXiv_(identifier)
Milgrom, M.; Sanders, R.H. (2003). "Modified Newtonian Dynamics and the 'Dearth of Dark Matter in Ordinary Elliptical Galaxies'". Astrophys J. 599 (1): 25–28. arXiv:astro-ph/0309617. Bibcode:2003ApJ...599L..25M. doi:10.1086/381138. S2CID 14378227. /wiki/ArXiv_(identifier)
Chae, Kyu-Hyun; Lelli, Federico; Desmond, Harry; McGaugh, Stacy S.; Li, Pengfei; Schombert, James M. (2020). "Testing the Strong Equivalence Principle: Detection of the External Field Effect in Rotationally Supported Galaxies". The Astrophysical Journal. 904 (1): 51. arXiv:2009.11525. Bibcode:2020ApJ...904...51C. doi:10.3847/1538-4357/abbb96. S2CID 221879077. https://doi.org/10.3847%2F1538-4357%2Fabbb96
Kyu-Hyun Chae (18 October 2022). "Distinguishing Dark Matter, Modified Gravity, and Modified Inertia with the Inner and Outer Parts of Galactic Rotation Curves". The Astrophysical Journal. 941 (1): 55. arXiv:2207.11069. Bibcode:2022ApJ...941...55C. doi:10.3847/1538-4357/ac93fc. https://doi.org/10.3847%2F1538-4357%2Fac93fc
Kroupa, Pavel (2015). "Lessons from the Local Group (And Beyond) on Dark Matter". Lessons from the Local Group. pp. 337–352. arXiv:1409.6302. doi:10.1007/978-3-319-10614-4_28. ISBN 978-3-319-10613-7. S2CID 119114754. 978-3-319-10613-7
Müller, Oliver; Pawlowski, Marcel S.; Jerjen, Helmut; Lelli, Federico (2018-02-02). "A whirling plane of satellite galaxies around Centaurus A challenges cold dark matter cosmology" (PDF). Science. 359 (6375): 534–537. arXiv:1802.00081. Bibcode:2018Sci...359..534M. doi:10.1126/science.aao1858. ISSN 0036-8075. PMID 29420285. Retrieved 2025-02-28. https://science.sciencemag.org/content/sci/359/6375/534.full.pdf
Bournaud, F.; Duc, P.-A.; Brinks, E.; Boquien, M.; Amram, P.; Lisenfeld, U.; Koribalski, B. S.; Walter, F.; Charmandaris, V. (2007). "Missing Mass in Collisional Debris from Galaxies". Science. 316 (5828): 1166–1169. arXiv:0705.1356. Bibcode:2007Sci...316.1166B. doi:10.1126/science.1142114. PMID 17495138. S2CID 20946839. /wiki/ArXiv_(identifier)
Gentile, G.; Famaey, B.; Combes, F.; Kroupa, P.; Zhao, H. S.; Tiret, O. (2007). "Tidal dwarf galaxies as a test of fundamental physics". Astronomy & Astrophysics. 472 (2): L25 – L28. arXiv:0706.1976. Bibcode:2007A&A...472L..25G. doi:10.1051/0004-6361:20078081. S2CID 1288102. /wiki/ArXiv_(identifier)
Kroupa, P. (2012). "The Dark Matter Crisis: Falsification of the Current Standard Model of Cosmology". Publications of the Astronomical Society of Australia. 29 (4): 395–433. arXiv:1204.2546. Bibcode:2012PASA...29..395K. doi:10.1071/AS12005. S2CID 55470527. /wiki/ArXiv_(identifier)
Asencio, Elena; Banik, Indranil; Mieske, Steffen; Venhola, Aku; Kroupa, Pavel; Zhao, Hongsheng (2022). "The distribution and morphologies of Fornax Cluster dwarf galaxies suggest they lack dark matter". Monthly Notices of the Royal Astronomical Society. 515 (2): 2981–3013. arXiv:2208.02265. doi:10.1093/mnras/stac1765. https://doi.org/10.1093%2Fmnras%2Fstac1765
Brouwer, Margot M.; Oman, Kyle A.; Valentijn, Edwin A.; Bilicki, Maciej; Heymans, Catherine; Hoekstra, Henk; Napolitano, Nicola R.; Roy, Nivya; Tortora, Crescenzo; Wright, Angus H.; Asgari, Marika; van den Busch, Jan Luca; Dvornik, Andrej; Erben, Thomas; Giblin, Benjamin; Graham, Alister W.; Hildebrandt, Hendrik; Hopkins, Andrew M.; Kannawadi, Arun; Kuijken, Konrad; Liske, Jochen; Shan, HuanYuan; Tröster, Tilman; Verlinde, Erik; Visser, Manus (2021). "The weak lensing radial acceleration relation: Constraining modified gravity and cold dark matter theories with KiDS-1000" (PDF). Astronomy & Astrophysics. 650: A113. arXiv:2106.11677. Bibcode:2021A&A...650A.113B. doi:10.1051/0004-6361/202040108. ISSN 0004-6361. Retrieved 2025-03-02. https://www.aanda.org/articles/aa/pdf/2021/06/aa40108-20.pdf
Mistele, T.; McGaugh, S.; Lelli, F.; Schombert, J.; Li, P. (2024-04-01). "Radial acceleration relation of galaxies with joint kinematic and weak-lensing data". Journal of Cosmology and Astroparticle Physics. 2024 (4): 020. arXiv:2310.15248. Bibcode:2024JCAP...04..020M. doi:10.1088/1475-7516/2024/04/020. ISSN 1475-7516. https://doi.org/10.1088%2F1475-7516%2F2024%2F04%2F020
Mistele, Tobias; McGaugh, Stacy; Lelli, Federico; Schombert, James; Li, Pengfei (2024-07-01). "Indefinitely Flat Circular Velocities and the Baryonic Tully–Fisher Relation from Weak Lensing". The Astrophysical Journal Letters. 969 (1): L3. arXiv:2406.09685. Bibcode:2024ApJ...969L...3M. doi:10.3847/2041-8213/ad54b0. ISSN 2041-8205. https://doi.org/10.3847%2F2041-8213%2Fad54b0
Tian, Yong; Ko, Chung-Ming (2017). "Mass discrepancy–acceleration relation in Einstein rings". Monthly Notices of the Royal Astronomical Society. 472 (1): 765–771. arXiv:1702.00183. doi:10.1093/mnras/stx2056. ISSN 0035-8711. https://doi.org/10.1093%2Fmnras%2Fstx2056
Jiménez, M. A.; Hernandez, X. (2014). "Disk stability under MONDian gravity". arXiv:1406.0537 [astro-ph.GA]. /wiki/ArXiv_(identifier)
McGaugh, S. (1998). "Testing the Hypothesis of Modified Dynamics with Low Surface Brightness Galaxies and Other Evidence". Astrophys J. 499 (1): 66–81. arXiv:astro-ph/9801102. Bibcode:1998ApJ...499...66M. doi:10.1086/305629. S2CID 18901029. /wiki/ArXiv_(identifier)
McGaugh, S. (2005). "Balance of Dark and Luminous Mass in Rotating Galaxies". Phys. Rev. Lett. 95 (17): 171302. arXiv:astro-ph/0509305. Bibcode:2005PhRvL..95q1302M. doi:10.1103/physrevlett.95.171302. PMID 16383816. S2CID 1715002. /wiki/ArXiv_(identifier)
Roshan, Mahmood; Banik, Indranil; Ghafourian, Neda; Thies, Ingo; Famaey, Benoit; Asencio, Elena; Kroupa, Pavel (2021-03-26). "Barred spiral galaxies in modified gravity theories". Monthly Notices of the Royal Astronomical Society. 503 (2): 2833–2860. arXiv:2103.01794. doi:10.1093/mnras/stab651. ISSN 0035-8711. https://doi.org/10.1093%2Fmnras%2Fstab651
Roshan, Mahmood; Ghafourian, Neda; Kashfi, Tahere; Banik, Indranil; Haslbauer, Moritz; Cuomo, Virginia; Famaey, Benoit; Kroupa, Pavel (2021-09-30). "Fast galaxy bars continue to challenge standard cosmology". Monthly Notices of the Royal Astronomical Society. 508 (1): 926–939. arXiv:2106.10304. Bibcode:2021MNRAS.508..926R. doi:10.1093/mnras/stab2553. ISSN 0035-8711. Retrieved 2025-04-06. https://hal.science/hal-03279520/document
Kroupa, Pavel; Jerabkova, Tereza; Thies, Ingo; Pflamm-Altenburg, Jan; Famaey, Benoit; Boffin, Henri; Dabringhausen, Jörg; Beccari, Giacomo; Prusti, Timo; Boily, Christian; Haghi, Hosein; Wu, Xufen; Haas, Jaroslav; Zonoozi, Akram Hasani; Thomas, Guillaume; Šubr, Ladislav; Aarseth, Sverre J (26 October 2022). "Asymmetrical tidal tails of open star clusters: stars crossing their cluster's práh† challenge Newtonian gravitation". Monthly Notices of the Royal Astronomical Society. 517 (3): 3613–3639. arXiv:2210.13472. doi:10.1093/mnras/stac2563. Retrieved 2 November 2022. https://academic.oup.com/mnras/article-abstract/517/3/3613/6773470
University of Bonn. "Astrophysicists make observations consistent with the predictions of an alternative theory of gravity". Phys.org. Retrieved 2 November 2022. https://phys.org/news/2022-10-astrophysicists-alternative-theory-gravity.html
Kyu-Hyun, Chae (2023). "Breakdown of the Newton–Einstein Standard Gravity at Low Acceleration in Internal Dynamics of Wide Binary Stars". The Astrophysical Journal. 952 (2): 128. arXiv:2305.04613. Bibcode:2023ApJ...952..128C. doi:10.3847/1538-4357/ace101. https://doi.org/10.3847%2F1538-4357%2Face101
Banik, Indranil; Pittordis, Charalambos; Sutherland, Will; Famaey, Benoit; Ibata, Rodrigo; Mieske, Steffen; Zhao, Hongsheng (2024). "Strong constraints on the gravitational law from Gaia DR3 wide binaries". Monthly Notices of the Royal Astronomical Society. 527 (3): 4573–4615. arXiv:2311.03436. doi:10.1093/mnras/stad3393. https://doi.org/10.1093%2Fmnras%2Fstad3393
Kyu-Hyun, Chae (2024). "Robust Evidence for the Breakdown of Standard Gravity at Low Acceleration from Statistically Pure Binaries Free of Hidden Companions". The Astrophysical Journal. 960 (2): 114. arXiv:2309.10404. Bibcode:2024ApJ...960..114C. doi:10.3847/1538-4357/ad0ed5. https://doi.org/10.3847%2F1538-4357%2Fad0ed5
McGaugh, Stacy S.; Schombert, James M.; Lelli, Federico; Franck, Jay (2024-11-01). "Accelerated Structure Formation: The Early Emergence of Massive Galaxies and Clusters of Galaxies". The Astrophysical Journal. 976 (1): 13. arXiv:2406.17930. Bibcode:2024ApJ...976...13M. doi:10.3847/1538-4357/ad834d. ISSN 0004-637X. https://doi.org/10.3847%2F1538-4357%2Fad834d
Kaplinghat, Manoj; Turner, Michael (2002). "How Cold Dark Matter Theory Explains Milgrom's Law". The Astrophysical Journal. 569 (1): L19 – L22. arXiv:astro-ph/0107284. Bibcode:2002ApJ...569L..19K. doi:10.1086/340578. S2CID 5679705. /wiki/ArXiv_(identifier)
Blake, Chris; James, J. Berian; Poole, Gregory B. (2014). "Using the topology of large-scale structure in the WiggleZ Dark Energy Survey as a cosmological standard ruler". Monthly Notices of the Royal Astronomical Society. 437 (3): 2488–2506. arXiv:1310.6810. Bibcode:2014MNRAS.437.2488B. doi:10.1093/mnras/stt2062. S2CID 56352810. https://doi.org/10.1093%2Fmnras%2Fstt2062
Milgrom, Mordehai (2002). "Do Modified Newtonian Dynamics Follow from the Cold Dark Matter Paradigm?". The Astrophysical Journal. 571 (2): L81 – L83. arXiv:astro-ph/0110362. Bibcode:2002ApJ...571L..81M. doi:10.1086/341223. S2CID 120648795. /wiki/ArXiv_(identifier)
Berezhiani, Lasha; Khoury, Justin (2015-11-09). "Theory of dark matter superfluidity". Physical Review D. 92 (10): 103510. arXiv:1507.01019. Bibcode:2015PhRvD..92j3510B. doi:10.1103/PhysRevD.92.103510. ISSN 1550-7998. https://doi.org/10.1103%2FPhysRevD.92.103510
Ren, Tao; Kwa, Anna; Kaplinghat, Manoj; Yu, Hai-Bo (2019-08-07). "Reconciling the Diversity and Uniformity of Galactic Rotation Curves with Self-Interacting Dark Matter". Physical Review X. 9 (3): 031020. arXiv:1808.05695. Bibcode:2019PhRvX...9c1020R. doi:10.1103/PhysRevX.9.031020. ISSN 2160-3308. https://doi.org/10.1103%2FPhysRevX.9.031020
Blanchet, Luc (2007). "Gravitational polarization and the phenomenology of MOND". Classical and Quantum Gravity. 24 (14): 3529–3539. arXiv:astro-ph/0605637. Bibcode:2007CQGra..24.3529B. doi:10.1088/0264-9381/24/14/001. S2CID 16832511. /wiki/ArXiv_(identifier)
It is also a problem for standard cold dark matter, since it needs to demonstrate that it is capable of forming galaxies without dark matter.
Trujillo, Ignacio (14 March 2019). "A distance of 13 Mpc resolves the claimed anomalies of the galaxy lacking dark matter". Monthly Notices of the Royal Astronomical Society. 486 (1): 1192–1219. arXiv:1806.10141. doi:10.1093/mnras/stz771. Retrieved 23 November 2024. https://academic.oup.com/mnras/article/486/1/1192/5380810?login=false
Haghi, Hosein; Kroupa, Pavel; Banik, Indranil; Wu, Xufen; Zonoozi, Akram H.; Javanmardi, Behnam; Ghari, Amir; Müller, Oliver; Dabringhausen, Jörg; Zhao, Hongsheng (2019-08-14). "A new formulation of the external field effect in MOND and numerical simulations of ultra-diffuse dwarf galaxies – application to NGC 1052-DF2 and NGC 1052-DF4". Monthly Notices of the Royal Astronomical Society. 487 (2): 2441–2454. arXiv:1906.03268. doi:10.1093/mnras/stz1465. ISSN 0035-8711. https://doi.org/10.1093%2Fmnras%2Fstz1465
J. A. Sellwood; R. H. Sanders (June 2022). "The ultradiffuse galaxy AGC 114905 needs dark matter". Monthly Notices of the Royal Astronomical Society. 514 (3): 4008–4017. arXiv:2202.08678. doi:10.1093/mnras/stac1604. https://doi.org/10.1093%2Fmnras%2Fstac1604
Kent, Stephen M. (1987). "Dark matter in spiral galaxies. II - Galaxies with H I rotation curves". The Astronomical Journal. 93: 816-832. Bibcode:1987AJ.....93..816K. doi:10.1086/114366. https://articles.adsabs.harvard.edu/pdf/1987AJ.....93..816K
Rodrigues, Davi C.; Marra, Valerio; del Popolo, Antonino; Davari, Zahra (2018-06-18). "Absence of a fundamental acceleration scale in galaxies". Nature Astronomy. 2 (8): 668–672. arXiv:1806.06803. Bibcode:2018NatAs...2..668R. doi:10.1038/s41550-018-0498-9. ISSN 2397-3366. https://doi.org/10.1038%2Fs41550-018-0498-9
Li, Pengfei; Lelli, Federico; McGaugh, Stacy; Schombert, James; Chae, Kyu-Hyun (2021). "A cautionary tale in fitting galaxy rotation curves with Bayesian techniques: Does Newton's constant vary from galaxy to galaxy?" (PDF). Astronomy & Astrophysics. 646: L13. arXiv:2101.11644. Bibcode:2021A&A...646L..13L. doi:10.1051/0004-6361/202040101. ISSN 0004-6361. Retrieved 2025-02-22. https://www.aanda.org/articles/aa/pdf/2021/02/aa40101-20.pdf
McGaugh, Stacy S.; Li, Pengfei; Lelli, Federico; Schombert, James M. (2018-11-13). "Presence of a fundamental acceleration scale in galaxies" (PDF). Nature Astronomy. 2 (12): 924. Bibcode:2018NatAs...2..924M. doi:10.1038/s41550-018-0615-9. ISSN 2397-3366. Retrieved 2025-02-22. https://www.nature.com/articles/s41550-018-0615-9.pdf
Anthony Aguirre; Joop Schaye & Eliot Quataert (2001). "Problems for Modified Newtonian Dynamics in Clusters and the Lyα Forest?". The Astrophysical Journal. 561 (2): 550–558. arXiv:astro-ph/0105184. Bibcode:2001ApJ...561..550A. doi:10.1086/323376. S2CID 119071058. /wiki/ArXiv_(identifier)
Exirifard, Qasem (2013). "Lunar System Constraints on the Modified Theories of Gravity". International Journal of Modern Physics D. 22 (9): 1350064. arXiv:1112.4652. Bibcode:2013IJMPD..2250064E. doi:10.1142/S0218271813500648. ISSN 0218-2718. https://doi.org/10.1142%2FS0218271813500648
Hees, A.; Folkner, W. M.; Jacobson, R. A.; Park, R. S. (2014-05-13). "Constraints on modified Newtonian dynamics theories from radio tracking data of the Cassini spacecraft". Physical Review D. 89 (10): 102002. arXiv:1402.6950. Bibcode:2014PhRvD..89j2002H. doi:10.1103/PhysRevD.89.102002. ISSN 1550-7998. https://doi.org/10.1103%2FPhysRevD.89.102002
Banik, Indranil; Zhao, Hongsheng (2022-06-27). "From Galactic Bars to the Hubble Tension: Weighing Up the Astrophysical Evidence for Milgromian Gravity". Symmetry. 14 (7): 1331. arXiv:2110.06936. Bibcode:2022Symm...14.1331B. doi:10.3390/sym14071331. ISSN 2073-8994. https://doi.org/10.3390%2Fsym14071331
Vokrouhlický, David; Nesvorný, David; Tremaine, Scott (2024-06-01). "Testing MOND on Small Bodies in the Remote Solar System". The Astrophysical Journal. 968 (1): 47. arXiv:2403.09555. Bibcode:2024ApJ...968...47V. doi:10.3847/1538-4357/ad40a3. ISSN 0004-637X. https://doi.org/10.3847%2F1538-4357%2Fad40a3
Gundlach, J. H.; Schlamminger, S.; Spitzer, C. D.; Choi, K.-Y.; Woodahl, B. A.; Coy, J. J.; Fischbach, E. (2007-04-13). "Laboratory Test of Newton's Second Law for Small Accelerations". Physical Review Letters. 98 (15): 150801. Bibcode:2007PhRvL..98o0801G. doi:10.1103/PhysRevLett.98.150801. ISSN 0031-9007. PMID 17501332. Retrieved 2025-02-26. https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=2657&context=physics_articles
Katherine Brown; Harsh Mathur (22 September 2023). "Modified Newtonian Dynamics as an Alternative to the Planet Nine Hypothesis". The Astronomical Journal. 166 (4): 168 ff. arXiv:2304.00576. Bibcode:2023AJ....166..168B. doi:10.3847/1538-3881/acef1e. https://doi.org/10.3847%2F1538-3881%2Facef1e
Klein, Norbert (2020-03-19). "Evidence for modified Newtonian dynamics from Cavendish-type gravitational constant experiments". Classical and Quantum Gravity. 37 (6): 065002. arXiv:1901.02604. Bibcode:2020CQGra..37f5002K. doi:10.1088/1361-6382/ab6cab. ISSN 0264-9381. https://doi.org/10.1088%2F1361-6382%2Fab6cab
McGaugh, S. (2015). "A Tale of Two Paradigms: the Mutual Incommensurability of LCDM and MOND". Canadian Journal of Physics. 93 (2): 250–259. arXiv:1404.7525. Bibcode:2015CaJPh..93..250M. doi:10.1139/cjp-2014-0203. S2CID 51822163. /wiki/ArXiv_(identifier)
Anthony Aguirre; Joop Schaye & Eliot Quataert (2001). "Problems for Modified Newtonian Dynamics in Clusters and the Lyα Forest?". The Astrophysical Journal. 561 (2): 550–558. arXiv:astro-ph/0105184. Bibcode:2001ApJ...561..550A. doi:10.1086/323376. S2CID 119071058. /wiki/ArXiv_(identifier)
Milgrom, Mordehai (2015-12-21). "Ultra-diffuse cluster galaxies as key to the MOND cluster conundrum" (PDF). Monthly Notices of the Royal Astronomical Society. 454 (4): 3810–3815. doi:10.1093/mnras/stv2202. ISSN 0035-8711. Retrieved 2025-03-01. https://academic.oup.com/mnras/article-pdf/454/4/3810/18509089/stv2202.pdf
Angus, Garry W.; Shan, Huan Yuan; Zhao, Hong Sheng & Famaey, Benoit (2007). "On the Proof of Dark Matter, the Law of Gravity, and the Mass of Neutrinos". The Astrophysical Journal Letters. 654 (1): L13 – L16. arXiv:astro-ph/0609125. Bibcode:2007ApJ...654L..13A. doi:10.1086/510738. S2CID 17977472. /wiki/ArXiv_(identifier)
R.H. Sanders (2007). "Neutrinos as cluster dark matter". Monthly Notices of the Royal Astronomical Society. 380 (1): 331–338. arXiv:astro-ph/0703590. Bibcode:2007MNRAS.380..331S. doi:10.1111/j.1365-2966.2007.12073.x. S2CID 14237211. https://doi.org/10.1111%2Fj.1365-2966.2007.12073.x
Nieuwenhuizen, Theodorus M. (2015). "Dirac neutrino mass from a neutrino dark matter model for the galaxy cluster Abell 1689". Journal of Physics: Conference Series. 701 (1): 012022(13pp). arXiv:1510.06958. Bibcode:2016JPhCS.701a2022N. doi:10.1088/1742-6596/701/1/012022. S2CID 3599969. /wiki/ArXiv_(identifier)
Nieuwenhuizen, Theodorus M. (2016). "How Zwicky already ruled out modified gravity theories without dark matter". Fortschritte der Physik. 65 (6–8): 1600050. arXiv:1610.01543. doi:10.1002/prop.201600050. S2CID 118676940. /wiki/ArXiv_(identifier)
Clowe, Douglas; Bradač, Maruša; Gonzalez, Anthony H.; Markevitch, Maxim; Randall, Scott W.; Jones, Christine & Zaritsky, Dennis (2006). "A Direct Empirical Proof of the Existence of Dark Matter". The Astrophysical Journal Letters. 648 (2): L109 – L113. arXiv:astro-ph/0608407. Bibcode:2006ApJ...648L.109C. doi:10.1086/508162. S2CID 2897407. /wiki/ArXiv_(identifier)
Clowe, Douglas; Bradač, Maruša; Gonzalez, Anthony H.; Markevitch, Maxim; Randall, Scott W.; Jones, Christine & Zaritsky, Dennis (2006). "A Direct Empirical Proof of the Existence of Dark Matter". The Astrophysical Journal Letters. 648 (2): L109 – L113. arXiv:astro-ph/0608407. Bibcode:2006ApJ...648L.109C. doi:10.1086/508162. S2CID 2897407. /wiki/ArXiv_(identifier)
G.W. Angus; B. Famaey & H. Zhao (September 2006). "Can MOND take a bullet? Analytical comparisons of three versions of MOND beyond spherical symmetry". Mon. Not. R. Astron. Soc. 371 (1): 138–146. arXiv:astro-ph/0606216v1. Bibcode:2006MNRAS.371..138A. doi:10.1111/j.1365-2966.2006.10668.x. S2CID 15025801. https://doi.org/10.1111%2Fj.1365-2966.2006.10668.x
Angus, Garry W.; Shan, Huan Yuan; Zhao, Hong Sheng & Famaey, Benoit (2007). "On the Proof of Dark Matter, the Law of Gravity, and the Mass of Neutrinos". The Astrophysical Journal Letters. 654 (1): L13 – L16. arXiv:astro-ph/0609125. Bibcode:2007ApJ...654L..13A. doi:10.1086/510738. S2CID 17977472. /wiki/ArXiv_(identifier)
Scott, D.; White, M.; Cohn, J. D.; Pierpaoli, E. (2001). "Cosmological Difficulties with Modified Newtonian Dynamics (or: La Fin du MOND?)". arXiv:astro-ph/0104435. /wiki/ArXiv_(identifier)
Contaldi, Carlo R.; Wiseman, Toby; Withers, Benjamin (2008). "TeVeS gets caught on caustics". Physical Review D. 78 (4): 044034. arXiv:0802.1215. Bibcode:2008PhRvD..78d4034C. doi:10.1103/PhysRevD.78.044034. S2CID 119240967. /wiki/ArXiv_(identifier)
Jacob D. Bekenstein (2004). "Relativistic gravitation theory for the MOND paradigm". Phys. Rev. D70 (8): 83509. arXiv:astro-ph/0403694. Bibcode:2004PhRvD..70h3509B. doi:10.1103/PhysRevD.70.083509. /wiki/ArXiv_(identifier)
Clifton, Timothy; Ferreira, Pedro G.; Padilla, Antonio; Skordis, Constantinos (2012). "Modified gravity and cosmology". Physics Reports. 513 (1–3): 1–189. arXiv:1106.2476. Bibcode:2012PhR...513....1C. doi:10.1016/j.physrep.2012.01.001. S2CID 119258154. /wiki/ArXiv_(identifier)
Slosar, Anže; Melchiorri, Alessandro; Silk, Joseph I. (2005). "Test of modified Newtonian dynamics with recent Boomerang data". Physical Review D. 72 (10): 101301. arXiv:astro-ph/0508048. Bibcode:2005PhRvD..72j1301S. doi:10.1103/PhysRevD.72.101301. /wiki/ArXiv_(identifier)
Seifert, M. D. (2007). "Stability of spherically symmetric solutions in modified theories of gravity". Physical Review D. 76 (6): 064002. arXiv:gr-qc/0703060. Bibcode:2007PhRvD..76f4002S. doi:10.1103/PhysRevD.76.064002. S2CID 29014948. /wiki/Physical_Review_D
Zhang, P.; Liguori, M.; Bean, R.; Dodelson, S. (2007). "Probing Gravity at Cosmological Scales by Measurements which Test the Relationship between Gravitational Lensing and Matter Overdensity". Physical Review Letters. 99 (14): 141302. arXiv:0704.1932. Bibcode:2007PhRvL..99n1302Z. doi:10.1103/PhysRevLett.99.141302. PMID 17930657. S2CID 119672184. /wiki/Physical_Review_Letters
Boran, Sibel; Desai, Shantanu; Kahya, Emre; Woodard, Richard (2018), "GW170817 Falsifies Dark Matter Emulators", Physical Review D, 97 (4): 041501, arXiv:1710.06168, Bibcode:2018PhRvD..97d1501B, doi:10.1103/PhysRevD.97.041501, S2CID 119468128 /wiki/ArXiv_(identifier)
Famaey, B.; McGaugh, S. (2012). "Modified Newtonian dynamics (MOND): Observational phenomenology and relativistic extensions". Living Reviews in Relativity. 15 (1): 10. arXiv:1112.3960. Bibcode:2012LRR....15...10F. doi:10.12942/lrr-2012-10. PMC 5255531. PMID 28163623. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5255531
Alzain, Mohammed (2017). "Modified Newtonian Dynamics (MOND) as a Modification of Newtonian Inertia". Journal of Astrophysics and Astronomy. 38 (4): 59. arXiv:1708.05385. Bibcode:2017JApA...38...59A. doi:10.1007/s12036-017-9479-0. S2CID 119245210. /wiki/ArXiv_(identifier)
Skordis, Constantinos; Złośnik, Tom (2021-10-15). "New Relativistic Theory for Modified Newtonian Dynamics". Physical Review Letters. 127 (16): 161302. arXiv:2007.00082. Bibcode:2021PhRvL.127p1302S. doi:10.1103/PhysRevLett.127.161302. ISSN 0031-9007. PMID 34723619. https://doi.org/10.1103%2FPhysRevLett.127.161302
Scott, D.; White, M.; Cohn, J. D.; Pierpaoli, E. (2001). "Cosmological Difficulties with Modified Newtonian Dynamics (or: La Fin du MOND?)". arXiv:astro-ph/0104435. /wiki/ArXiv_(identifier)
Ade, P.A.R.; et al. (2016). "Planck 2015 results. XIII. Cosmological parameters". Astron. Astrophys. 594 (13): A13. arXiv:1502.01589. Bibcode:2016A&A...594A..13P. doi:10.1051/0004-6361/201525830. S2CID 119262962. /wiki/ArXiv_(identifier)
Skordis, C.; et al. (2006). "Large scale structure in Bekenstein's theory of relativistic modified Newtonian dynamics". Phys. Rev. Lett. 96 (1): 011301. arXiv:astro-ph/0505519. Bibcode:2006PhRvL..96a1301S. doi:10.1103/PhysRevLett.96.011301. PMID 16486433. S2CID 46508316. /wiki/ArXiv_(identifier)
Skordis, Constantinos; Złośnik, Tom (2021-10-15). "New Relativistic Theory for Modified Newtonian Dynamics". Physical Review Letters. 127 (16): 161302. arXiv:2007.00082. Bibcode:2021PhRvL.127p1302S. doi:10.1103/PhysRevLett.127.161302. ISSN 0031-9007. PMID 34723619. https://doi.org/10.1103%2FPhysRevLett.127.161302
Keith Cooper (6 February 2024). "Cosmic combat: delving into the battle between dark matter and modified gravity". physicsworld. https://physicsworld.com/a/cosmic-combat-delving-into-the-battle-between-dark-matter-and-modified-gravity
McGaugh, Stacy (2015). "A tale of two paradigms: The mutual incommensurability of ΛCDM and MOND". Canadian Journal of Physics. 93 (2): 250–259. arXiv:1404.7525v2. Bibcode:2015CaJPh..93..250M. doi:10.1139/cjp-2014-0203. S2CID 51822163. /wiki/ArXiv_(identifier)
Charles L. Steinhardt; Peter Capak; Dan Masters & Josh S. Speagle (2016). "The Impossibly Early Galaxy Problem". The Astrophysical Journal. 824 (1): 21. arXiv:1506.01377. Bibcode:2016ApJ...824...21S. doi:10.3847/0004-637X/824/1/21. S2CID 35183078. https://doi.org/10.3847%2F0004-637X%2F824%2F1%2F21
Milgrom, M. (1983). "A modification of the Newtonian dynamics as an alternative to the hidden mass hypothesis". Astrophysical Journal. 270: 365–370. Bibcode:1983ApJ...270..365M. doi:10.1086/161130.. Milgrom, M. (1983). "A modification of the Newtonian dynamics - Implications for galaxies". Astrophysical Journal. 270: 371–383. Bibcode:1983ApJ...270..371M. doi:10.1086/161131.. Milgrom, M. (1983). "A modification of the Newtonian dynamics - Implications for galaxy systems". Astrophysical Journal. 270: 384–389. Bibcode:1983ApJ...270..384M. doi:10.1086/161132.. https://doi.org/10.1086%2F161130
Milgrom, Mordehai (2020). "The $a_0$ -- cosmology connection in MOND". arXiv:0801.3133 [astro-ph]. /wiki/ArXiv_(identifier)
Schlatter, A.; Kastner, R. E. (2023). "Gravity from transactions: Fulfilling the entropic gravity program". Journal of Physics Communications. 7 (6): 065009. arXiv:2209.04025. Bibcode:2023JPhCo...7f5009S. doi:10.1088/2399-6528/acd6d7. S2CID 258791517. https://doi.org/10.1088%2F2399-6528%2Facd6d7
Wallin, John F.; Dixon, David S.; Page, Gary L. (23 May 2007). "Testing Gravity in the Outer Solar System: Results from Trans-Neptunian Objects". The Astrophysical Journal. 666 (2): 1296–1302. arXiv:0705.3408. Bibcode:2007ApJ...666.1296W. doi:10.1086/520528. S2CID 18654075. /wiki/ArXiv_(identifier)
Ignatiev, A.Yu. (2015). "Testing MOND on Earth". Canadian Journal of Physics. 93 (2): 166–168. arXiv:1408.3059. Bibcode:2015CaJPh..93..166I. doi:10.1139/cjp-2014-0164. S2CID 119260352. /wiki/ArXiv_(identifier)
De Lorenci, V. A.; Faúndez-Abans, M.; Pereira, J. P. (2009). "Testing the Newton second law in the regime of small accelerations". Astronomy & Astrophysics. 503 (1): L1 – L4. arXiv:1002.2766. Bibcode:2009A&A...503L...1D. doi:10.1051/0004-6361/200811520. S2CID 53345722. /wiki/ArXiv_(identifier)
Trenkel, Christian; Kemble, Steve; Bevis, Neil; Magueijo, Joao (2010). "Testing MOND/TEVES with LISA Pathfinder". arXiv:1001.1303 [astro-ph.CO]. /wiki/ArXiv_(identifier)
Blanchet, Luc; Novak, Jerome (2011). "Testing MOND in the Solar System". arXiv:1105.5815 [astro-ph.CO]. /wiki/ArXiv_(identifier)
Sahni, Varun; Shtanov, Yuri (2008). "Apsis: An Artificial Planetary System in Space to Probe Extra-Dimensional Gravity and Mond". International Journal of Modern Physics D. 17 (3n04): 453–466. arXiv:gr-qc/0606063. Bibcode:2008IJMPD..17..453S. doi:10.1142/S0218271808012127. S2CID 6416355. /wiki/ArXiv_(identifier)
Hernandez, X.; Jiménez, M. A.; Allen, C. (2012). "Wide binaries as a critical test of classical gravity". The European Physical Journal C. 72 (2): 1884. arXiv:1105.1873. Bibcode:2012EPJC...72.1884H. doi:10.1140/epjc/s10052-012-1884-6. S2CID 119202534. /wiki/ArXiv_(identifier)
Hossenfelder, Sabine; Mistele, Tobias (2018). "The redshift-dependence of radial acceleration: Modified gravity versus particle dark matter". International Journal of Modern Physics D. 27 (14). arXiv:1803.08683. Bibcode:2018IJMPD..2747010H. doi:10.1142/S0218271818470107. S2CID 54663204. /wiki/ArXiv_(identifier)