Further information: Bravais lattice
There are four orthorhombic Bravais lattices: primitive orthorhombic, base-centered orthorhombic, body-centered orthorhombic, and face-centered orthorhombic.
For the base-centered orthorhombic lattice, the primitive cell has the shape of a right rhombic prism;1 it can be constructed because the two-dimensional centered rectangular base layer can also be described with primitive rhombic axes. Note that the length a {\displaystyle a} of the primitive cell below equals 1 2 a 2 + b 2 {\displaystyle {\frac {1}{2}}{\sqrt {a^{2}+b^{2}}}} of the conventional cell above.
Further information: Crystallographic point group
The orthorhombic crystal system class names, examples, Schönflies notation, Hermann-Mauguin notation, point groups, International Tables for Crystallography space group number,2 orbifold notation, type, and space groups are listed in the table below.
Boron(gamma form)
Main article: Rectangular lattice
In two dimensions there are two orthorhombic Bravais lattices: primitive rectangular and centered rectangular.
See Hahn (2002), p. 746, row oC, column Primitive, where the cell parameters are given as a1 = a2, α = β = 90° - Hahn, Theo, ed. (2002). International Tables for Crystallography, Volume A: Space Group Symmetry. International Tables for Crystallography. Vol. A (5th ed.). Berlin, New York: Springer-Verlag. doi:10.1107/97809553602060000100. ISBN 978-0-7923-6590-7. http://it.iucr.org/A/ ↩
Prince, E., ed. (2006). International Tables for Crystallography. International Union of Crystallography. doi:10.1107/97809553602060000001. ISBN 978-1-4020-4969-9. S2CID 146060934. 978-1-4020-4969-9 ↩
"The 32 crystal classes". Retrieved 2018-06-19. https://www.tulane.edu/~sanelson/eens211/32crystalclass.htm ↩