The following notation and notions are used, where R : X ⇉ Y {\displaystyle {\mathcal {R}}:X\rightrightarrows Y} is a set-valued function and S {\displaystyle S} is a non-empty subset of a topological vector space X {\displaystyle X} :
Theorem1 (Ursescu)—Let X {\displaystyle X} be a complete semi-metrizable locally convex topological vector space and R : X ⇉ Y {\displaystyle {\mathcal {R}}:X\rightrightarrows Y} be a closed convex multifunction with non-empty domain. Assume that span ( Im R − y ) {\displaystyle \operatorname {span} (\operatorname {Im} {\mathcal {R}}-y)} is a barrelled space for some/every y ∈ Im R . {\displaystyle y\in \operatorname {Im} {\mathcal {R}}.} Assume that y 0 ∈ i ( Im R ) {\displaystyle y_{0}\in {}^{i}(\operatorname {Im} {\mathcal {R}})} and let x 0 ∈ R − 1 ( y 0 ) {\displaystyle x_{0}\in {\mathcal {R}}^{-1}\left(y_{0}\right)} (so that y 0 ∈ R ( x 0 ) {\displaystyle y_{0}\in {\mathcal {R}}\left(x_{0}\right)} ). Then for every neighborhood U {\displaystyle U} of x 0 {\displaystyle x_{0}} in X , {\displaystyle X,} y 0 {\displaystyle y_{0}} belongs to the relative interior of R ( U ) {\displaystyle {\mathcal {R}}(U)} in aff ( Im R ) {\displaystyle \operatorname {aff} (\operatorname {Im} {\mathcal {R}})} (that is, y 0 ∈ int aff ( Im R ) R ( U ) {\displaystyle y_{0}\in \operatorname {int} _{\operatorname {aff} (\operatorname {Im} {\mathcal {R}})}{\mathcal {R}}(U)} ). In particular, if i b ( Im R ) ≠ ∅ {\displaystyle {}^{ib}(\operatorname {Im} {\mathcal {R}})\neq \varnothing } then i b ( Im R ) = i ( Im R ) = rint ( Im R ) . {\displaystyle {}^{ib}(\operatorname {Im} {\mathcal {R}})={}^{i}(\operatorname {Im} {\mathcal {R}})=\operatorname {rint} (\operatorname {Im} {\mathcal {R}}).}
Closed graph theorem—Let X {\displaystyle X} and Y {\displaystyle Y} be Fréchet spaces and T : X → Y {\displaystyle T:X\to Y} be a linear map. Then T {\displaystyle T} is continuous if and only if the graph of T {\displaystyle T} is closed in X × Y . {\displaystyle X\times Y.}
For the non-trivial direction, assume that the graph of T {\displaystyle T} is closed and let R := T − 1 : Y ⇉ X . {\displaystyle {\mathcal {R}}:=T^{-1}:Y\rightrightarrows X.} It is easy to see that gr R {\displaystyle \operatorname {gr} {\mathcal {R}}} is closed and convex and that its image is X . {\displaystyle X.} Given x ∈ X , {\displaystyle x\in X,} ( T x , x ) {\displaystyle (Tx,x)} belongs to Y × X {\displaystyle Y\times X} so that for every open neighborhood V {\displaystyle V} of T x {\displaystyle Tx} in Y , {\displaystyle Y,} R ( V ) = T − 1 ( V ) {\displaystyle {\mathcal {R}}(V)=T^{-1}(V)} is a neighborhood of x {\displaystyle x} in X . {\displaystyle X.} Thus T {\displaystyle T} is continuous at x . {\displaystyle x.} Q.E.D.
Uniform boundedness principle—Let X {\displaystyle X} and Y {\displaystyle Y} be Fréchet spaces and T : X → Y {\displaystyle T:X\to Y} be a bijective linear map. Then T {\displaystyle T} is continuous if and only if T − 1 : Y → X {\displaystyle T^{-1}:Y\to X} is continuous. Furthermore, if T {\displaystyle T} is continuous then T {\displaystyle T} is an isomorphism of Fréchet spaces.
Apply the closed graph theorem to T {\displaystyle T} and T − 1 . {\displaystyle T^{-1}.} Q.E.D.
Open mapping theorem—Let X {\displaystyle X} and Y {\displaystyle Y} be Fréchet spaces and T : X → Y {\displaystyle T:X\to Y} be a continuous surjective linear map. Then T is an open map.
Clearly, T {\displaystyle T} is a closed and convex relation whose image is Y . {\displaystyle Y.} Let U {\displaystyle U} be a non-empty open subset of X , {\displaystyle X,} let y {\displaystyle y} be in T ( U ) , {\displaystyle T(U),} and let x {\displaystyle x} in U {\displaystyle U} be such that y = T x . {\displaystyle y=Tx.} From the Ursescu theorem it follows that T ( U ) {\displaystyle T(U)} is a neighborhood of y . {\displaystyle y.} Q.E.D.
The following notation and notions are used for these corollaries, where R : X ⇉ Y {\displaystyle {\mathcal {R}}:X\rightrightarrows Y} is a set-valued function, S {\displaystyle S} is a non-empty subset of a topological vector space X {\displaystyle X} :
Corollary—Let X {\displaystyle X} be a barreled first countable space and let C {\displaystyle C} be a subset of X . {\displaystyle X.} Then:
Simons' theorem2—Let X {\displaystyle X} and Y {\displaystyle Y} be first countable with X {\displaystyle X} locally convex. Suppose that R : X ⇉ Y {\displaystyle {\mathcal {R}}:X\rightrightarrows Y} is a multimap with non-empty domain that satisfies condition (Hwx) or else assume that X {\displaystyle X} is a Fréchet space and that R {\displaystyle {\mathcal {R}}} is lower ideally convex. Assume that span ( Im R − y ) {\displaystyle \operatorname {span} (\operatorname {Im} {\mathcal {R}}-y)} is barreled for some/every y ∈ Im R . {\displaystyle y\in \operatorname {Im} {\mathcal {R}}.} Assume that y 0 ∈ i ( Im R ) {\displaystyle y_{0}\in {}^{i}(\operatorname {Im} {\mathcal {R}})} and let x 0 ∈ R − 1 ( y 0 ) . {\displaystyle x_{0}\in {\mathcal {R}}^{-1}\left(y_{0}\right).} Then for every neighborhood U {\displaystyle U} of x 0 {\displaystyle x_{0}} in X , {\displaystyle X,} y 0 {\displaystyle y_{0}} belongs to the relative interior of R ( U ) {\displaystyle {\mathcal {R}}(U)} in aff ( Im R ) {\displaystyle \operatorname {aff} (\operatorname {Im} {\mathcal {R}})} (i.e. y 0 ∈ int aff ( Im R ) R ( U ) {\displaystyle y_{0}\in \operatorname {int} _{\operatorname {aff} (\operatorname {Im} {\mathcal {R}})}{\mathcal {R}}(U)} ). In particular, if i b ( Im R ) ≠ ∅ {\displaystyle {}^{ib}(\operatorname {Im} {\mathcal {R}})\neq \varnothing } then i b ( Im R ) = i ( Im R ) = rint ( Im R ) . {\displaystyle {}^{ib}(\operatorname {Im} {\mathcal {R}})={}^{i}(\operatorname {Im} {\mathcal {R}})=\operatorname {rint} (\operatorname {Im} {\mathcal {R}}).}
The implication (1) ⟹ {\displaystyle \implies } (2) in the following theorem is known as the Robinson–Ursescu theorem.3
Robinson–Ursescu theorem4—Let ( X , ‖ ⋅ ‖ ) {\displaystyle (X,\|\,\cdot \,\|)} and ( Y , ‖ ⋅ ‖ ) {\displaystyle (Y,\|\,\cdot \,\|)} be normed spaces and R : X ⇉ Y {\displaystyle {\mathcal {R}}:X\rightrightarrows Y} be a multimap with non-empty domain. Suppose that Y {\displaystyle Y} is a barreled space, the graph of R {\displaystyle {\mathcal {R}}} verifies condition condition (Hwx), and that ( x 0 , y 0 ) ∈ gr R . {\displaystyle (x_{0},y_{0})\in \operatorname {gr} {\mathcal {R}}.} Let C X {\displaystyle C_{X}} (resp. C Y {\displaystyle C_{Y}} ) denote the closed unit ball in X {\displaystyle X} (resp. Y {\displaystyle Y} ) (so C X = { x ∈ X : ‖ x ‖ ≤ 1 } {\displaystyle C_{X}=\{x\in X:\|x\|\leq 1\}} ). Then the following are equivalent:
Zălinescu 2002, p. 23. - Zălinescu, Constantin (30 July 2002). Convex Analysis in General Vector Spaces. River Edge, N.J. London: World Scientific Publishing. ISBN 978-981-4488-15-0. MR 1921556. OCLC 285163112 – via Internet Archive. https://archive.org/details/convexanalysisge00zali_934 ↩
Zălinescu 2002, p. 22-23. - Zălinescu, Constantin (30 July 2002). Convex Analysis in General Vector Spaces. River Edge, N.J. London: World Scientific Publishing. ISBN 978-981-4488-15-0. MR 1921556. OCLC 285163112 – via Internet Archive. https://archive.org/details/convexanalysisge00zali_934 ↩
Zălinescu 2002, p. 24. - Zălinescu, Constantin (30 July 2002). Convex Analysis in General Vector Spaces. River Edge, N.J. London: World Scientific Publishing. ISBN 978-981-4488-15-0. MR 1921556. OCLC 285163112 – via Internet Archive. https://archive.org/details/convexanalysisge00zali_934 ↩