Let R ⊆ S {\displaystyle {\mathcal {R}}\subseteq {\mathcal {S}}} be von Neumann algebras ( S {\displaystyle {\mathcal {S}}} and R {\displaystyle {\mathcal {R}}} may be general C*-algebras as well), a positive, linear mapping Φ {\displaystyle \Phi } of S {\displaystyle {\mathcal {S}}} onto R {\displaystyle {\mathcal {R}}} is said to be a conditional expectation (of S {\displaystyle {\mathcal {S}}} onto R {\displaystyle {\mathcal {R}}} ) when Φ ( I ) = I {\displaystyle \Phi (I)=I} and Φ ( R 1 S R 2 ) = R 1 Φ ( S ) R 2 {\displaystyle \Phi (R_{1}SR_{2})=R_{1}\Phi (S)R_{2}} if R 1 , R 2 ∈ R {\displaystyle R_{1},R_{2}\in {\mathcal {R}}} and S ∈ S {\displaystyle S\in {\mathcal {S}}} .
Let B {\displaystyle {\mathcal {B}}} be a C*-subalgebra of the C*-algebra A , φ 0 {\displaystyle {\mathfrak {A}},\varphi _{0}} an idempotent linear mapping of A {\displaystyle {\mathfrak {A}}} onto B {\displaystyle {\mathcal {B}}} such that ‖ φ 0 ‖ = 1 , A {\displaystyle \|\varphi _{0}\|=1,{\mathfrak {A}}} acting on H {\displaystyle {\mathcal {H}}} the universal representation of A {\displaystyle {\mathfrak {A}}} . Then φ 0 {\displaystyle \varphi _{0}} extends uniquely to an ultraweakly continuous idempotent linear mapping φ {\displaystyle \varphi } of A − {\displaystyle {\mathfrak {A}}^{-}} , the weak-operator closure of A {\displaystyle {\mathfrak {A}}} , onto B − {\displaystyle {\mathcal {B}}^{-}} , the weak-operator closure of B {\displaystyle {\mathcal {B}}} .
In the above setting, a result1 first proved by Tomiyama may be formulated in the following manner.
Theorem. Let A , B , φ , φ 0 {\displaystyle {\mathfrak {A}},{\mathcal {B}},\varphi ,\varphi _{0}} be as described above. Then φ {\displaystyle \varphi } is a conditional expectation from A − {\displaystyle {\mathfrak {A}}^{-}} onto B − {\displaystyle {\mathcal {B}}^{-}} and φ 0 {\displaystyle \varphi _{0}} is a conditional expectation from A {\displaystyle {\mathfrak {A}}} onto B {\displaystyle {\mathcal {B}}} .
With the aid of Tomiyama's theorem an elegant proof of Sakai's result on the characterization of those C*-algebras that are *-isomorphic to von Neumann algebras may be given.
Tomiyama J., On the projection of norm one in W*-algebras, Proc. Japan Acad. (33) (1957), Theorem 1, Pg. 608 ↩