Problems in earth science are often complex. It is difficult to apply well-known and described mathematical models to the natural environment, therefore machine learning is commonly a better alternative for such non-linear problems. Ecological data are commonly non-linear and consist of higher-order interactions, and together with missing data, traditional statistics may underperform as unrealistic assumptions such as linearity are applied to the model. A number of researchers found that machine learning outperforms traditional statistical models in earth science, such as in characterizing forest canopy structure, predicting climate-induced range shifts, and delineating geologic facies. Characterizing forest canopy structure enables scientists to study vegetation response to climate change. Predicting climate-induced range shifts enable policy makers to adopt suitable conversation method to overcome the consequences of climate change. Delineating geologic facies helps geologists to understand the geology of an area, which is essential for the development and management of an area.
In Earth Sciences, some data are often difficult to access or collect, therefore inferring data from data that are easily available by machine learning method is desirable. For example, geological mapping in tropical rainforests is challenging because the thick vegetation cover and rock outcrops are poorly exposed. Applying remote sensing with machine learning approaches provides an alternative way for rapid mapping without the need of manually mapping in the unreachable areas.
Machine learning can also reduce the efforts done by experts, as manual tasks of classification and annotation etc. are the bottlenecks in the workflow of the research of earth science. Geological mapping, especially in a vast, remote area is labour, cost and time-intensive with traditional methods. Incorporation of remote sensing and machine learning approaches can provide an alternative solution to eliminate some field mapping needs.
Consistency and bias-free is also an advantage of machine learning compared to manual works by humans. In research comparing the performance of human and machine learning in the identification of dinoflagellates, machine learning is found to be not as prone to systematic bias as humans. A recency effect that is present in humans is that the classification often biases towards the most recently recalled classes. In a labelling task of the research, if one kind of dinoflagellates occurs rarely in the samples, then expert ecologists commonly will not classify it correctly. The systematic bias strongly deteriorate the classification accuracies of humans.
The extensive usage of machine learning in various fields has led to a wide range of algorithms of learning methods being applied. Choosing the optimal algorithm for a specific purpose can lead to a significant boost in accuracy: for example, the lithological mapping of gold-bearing granite-greenstone rocks in Hutti, India with AVIRIS-NG hyperspectral data, shows more than 10% difference in overall accuracy between using support vector machines (SVMs) and random forest.
If computational resource is a concern, more computationally demanding learning methods such as deep neural networks are less preferred, despite the fact that they may outperform other algorithms, such as in soil classification.
Vegetation cover is one of the major obstacles for geological mapping with remote sensing, as reported in various research, both in large-scale and small-scale mapping. Vegetation affects the quality of spectral images, or obscures the rock information in aerial images.
Example applications in Geological, Lithological, and Mineral Prospectivity MappingEarthquakes can be produced in a laboratory settings to mimic real-world ones. With the help of machine learning, the patterns of acoustic signals as precursors for earthquakes can be identified. Predicting the time remaining before failure was demonstrated in a study with continuous acoustic time series data recorded from a fault. The algorithm applied was a random forest, trained with a set of slip events, performing strongly in predicting the time to failure. It identified acoustic signals to predict failures, with one of them being previously unidentified. Although this laboratory earthquake is not as complex as a natural one, progress was made that guides future earthquake prediction work.
Example applications in Earthquake PredictionAn adequate amount of training and validation data is required for machine learning. However, some very useful products like satellite remote sensing data only have decades of data since the 1970s. If one is interested in the yearly data, then only less than 50 samples are available. Such amount of data may not be adequate. In a study of automatic classification of geological structures, the weakness of the model is the small training dataset, even though with the help of data augmentation to increase the size of the dataset. Another study of predicting streamflow found that the accuracies depend on the availability of sufficient historical data, therefore sufficient training data determine the performance of machine learning. Inadequate training data may lead to a problem called overfitting. Overfitting causes inaccuracies in machine learning as the model learns about the noise and undesired details.
Machine learning cannot carry out some of the tasks as a human does easily. For example, in the quantification of water inflow in rock tunnel faces by images for Rock Mass Rating system (RMR), the damp and the wet state was not classified by machine learning because discriminating the two only by visual inspection is not possible. In some tasks, machine learning may not able to fully substitute manual work by a human.
In many machine learning algorithms, for example, Artificial Neural Network (ANN), it is considered as 'black box' approach as clear relationships and descriptions of how the results are generated in the hidden layers are unknown. 'White-box' approach such as decision tree can reveal the algorithm details to the users. If one wants to investigate the relationships, such 'black-box' approaches are not suitable. However, the performances of 'black-box' algorithms are usually better.
Mueller, J. P., & Massaron, L. (2021). Machine learning for dummies. John Wiley & Sons.
Resources., National Academies Press (U.S.) National Research Council (U.S.). Commission on Geosciences, Environment, and (2001). Basic research opportunities in earth science. National Academies Press. OCLC 439353646.{{cite book}}: CS1 maint: multiple names: authors list (link) http://worldcat.org/oclc/439353646
Miall, A.D. (December 1995). "The blue planet: An introduction to earth system science". Earth-Science Reviews. 39 (3–4): 269–271. doi:10.1016/0012-8252(95)90023-3. ISSN 0012-8252. https://dx.doi.org/10.1016/0012-8252(95)90023-3
Bhattacharya, B.; Solomatine, D.P. (March 2006). "Machine learning in soil classification". Neural Networks. 19 (2): 186–195. doi:10.1016/j.neunet.2006.01.005. ISSN 0893-6080. PMID 16530382. S2CID 14421859. https://dx.doi.org/10.1016/j.neunet.2006.01.005
Sang, Xuejia; Xue, Linfu; Ran, Xiangjin; Li, Xiaoshun; Liu, Jiwen; Liu, Zeyu (2020-02-05). "Intelligent High-Resolution Geological Mapping Based on SLIC-CNN". ISPRS International Journal of Geo-Information. 9 (2): 99. Bibcode:2020IJGI....9...99S. doi:10.3390/ijgi9020099. ISSN 2220-9964. https://doi.org/10.3390%2Fijgi9020099
Si, Lei; Xiong, Xiangxiang; Wang, Zhongbin; Tan, Chao (2020-03-14). "A Deep Convolutional Neural Network Model for Intelligent Discrimination between Coal and Rocks in Coal Mining Face". Mathematical Problems in Engineering. 2020: 1–12. doi:10.1155/2020/2616510. ISSN 1024-123X. https://doi.org/10.1155%2F2020%2F2616510
Marjanović, Miloš; Kovačević, Miloš; Bajat, Branislav; Voženílek, Vít (November 2011). "Landslide susceptibility assessment using SVM machine learning algorithm". Engineering Geology. 123 (3): 225–234. Bibcode:2011EngGe.123..225M. doi:10.1016/j.enggeo.2011.09.006. ISSN 0013-7952. https://dx.doi.org/10.1016/j.enggeo.2011.09.006
Merembayev, Timur; Yunussov, Rassul; Yedilkhan, Amirgaliyev (November 2018). "Machine Learning Algorithms for Classification Geology Data from Well Logging". 2018 14th International Conference on Electronics Computer and Computation (ICECCO). IEEE. pp. 206–212. doi:10.1109/icecco.2018.8634775. ISBN 978-1-7281-0132-3. S2CID 59620103. 978-1-7281-0132-3
De'ath, Glenn; Fabricius, Katharina E. (November 2000). "Classification and Regression Trees: A Powerful Yet Simple Technique for Ecological Data Analysis". Ecology. 81 (11): 3178–3192. doi:10.1890/0012-9658(2000)081[3178:cartap]2.0.co;2. ISSN 0012-9658. https://dx.doi.org/10.1890/0012-9658(2000)081%5b3178:cartap%5d2.0.co;2
Thessen, Anne (2016-06-27). "Adoption of Machine Learning Techniques in Ecology and Earth Science". One Ecosystem. 1: e8621. Bibcode:2016OneEc...1E8621T. doi:10.3897/oneeco.1.e8621. ISSN 2367-8194. https://doi.org/10.3897%2Foneeco.1.e8621
Zhao, Kaiguang; Popescu, Sorin; Meng, Xuelian; Pang, Yong; Agca, Muge (August 2011). "Characterizing forest canopy structure with lidar composite metrics and machine learning". Remote Sensing of Environment. 115 (8): 1978–1996. Bibcode:2011RSEnv.115.1978Z. doi:10.1016/j.rse.2011.04.001. ISSN 0034-4257. https://dx.doi.org/10.1016/j.rse.2011.04.001
Lawler, Joshua J.; White, Denis; Neilson, Ronald P.; Blaustein, Andrew R. (2006-06-26). "Predicting climate-induced range shifts: model differences and model reliability". Global Change Biology. 12 (8): 1568–1584. Bibcode:2006GCBio..12.1568L. CiteSeerX 10.1.1.582.9206. doi:10.1111/j.1365-2486.2006.01191.x. ISSN 1354-1013. S2CID 37416127. https://dx.doi.org/10.1111/j.1365-2486.2006.01191.x
Tartakovsky, Daniel M. (2004). "Delineation of geologic facies with statistical learning theory". Geophysical Research Letters. 31 (18). Bibcode:2004GeoRL..3118502T. CiteSeerX 10.1.1.146.5147. doi:10.1029/2004gl020864. ISSN 0094-8276. S2CID 16256805. https://dx.doi.org/10.1029/2004gl020864
Hurtt, George C.; Dubayah, Ralph; Drake, Jason; Moorcroft, Paul R.; Pacala, Stephen W.; Blair, J. Bryan; Fearon, Matthew G. (June 2004). "Beyond Potential Vegetation: Combining Lidar Data and a Height-Structured Model for Carbon Studies". Ecological Applications. 14 (3): 873–883. Bibcode:2004EcoAp..14..873H. doi:10.1890/02-5317. ISSN 1051-0761. https://dx.doi.org/10.1890/02-5317
Lawler, Joshua J.; White, Denis; Neilson, Ronald P.; Blaustein, Andrew R. (2006-06-26). "Predicting climate-induced range shifts: model differences and model reliability". Global Change Biology. 12 (8): 1568–1584. Bibcode:2006GCBio..12.1568L. CiteSeerX 10.1.1.582.9206. doi:10.1111/j.1365-2486.2006.01191.x. ISSN 1354-1013. S2CID 37416127. https://dx.doi.org/10.1111/j.1365-2486.2006.01191.x
Akpokodje, E. G. (June 1979). "The importance of engineering geological mapping in the development of the Niger delta basin". Bulletin of the International Association of Engineering Geology. 19 (1): 101–108. doi:10.1007/bf02600459. ISSN 1435-9529. S2CID 129112606. https://dx.doi.org/10.1007/bf02600459
Thessen, Anne (2016-06-27). "Adoption of Machine Learning Techniques in Ecology and Earth Science". One Ecosystem. 1: e8621. Bibcode:2016OneEc...1E8621T. doi:10.3897/oneeco.1.e8621. ISSN 2367-8194. https://doi.org/10.3897%2Foneeco.1.e8621
Costa, Iago; Tavares, Felipe; Oliveira, Junny (April 2019). "Predictive lithological mapping through machine learning methods: a case study in the Cinzento Lineament, Carajás Province, Brazil". Journal of the Geological Survey of Brazil. 2 (1): 26–36. doi:10.29396/jgsb.2019.v2.n1.3. ISSN 2595-1939. S2CID 134822423. https://doi.org/10.29396%2Fjgsb.2019.v2.n1.3
Costa, Iago; Tavares, Felipe; Oliveira, Junny (April 2019). "Predictive lithological mapping through machine learning methods: a case study in the Cinzento Lineament, Carajás Province, Brazil". Journal of the Geological Survey of Brazil. 2 (1): 26–36. doi:10.29396/jgsb.2019.v2.n1.3. ISSN 2595-1939. S2CID 134822423. https://doi.org/10.29396%2Fjgsb.2019.v2.n1.3
Thessen, Anne (2016-06-27). "Adoption of Machine Learning Techniques in Ecology and Earth Science". One Ecosystem. 1: e8621. Bibcode:2016OneEc...1E8621T. doi:10.3897/oneeco.1.e8621. ISSN 2367-8194. https://doi.org/10.3897%2Foneeco.1.e8621
Latifovic, Rasim; Pouliot, Darren; Campbell, Janet (2018-02-16). "Assessment of Convolution Neural Networks for Surficial Geology Mapping in the South Rae Geological Region, Northwest Territories, Canada". Remote Sensing. 10 (2): 307. Bibcode:2018RemS...10..307L. doi:10.3390/rs10020307. ISSN 2072-4292. https://doi.org/10.3390%2Frs10020307
Latifovic, Rasim; Pouliot, Darren; Campbell, Janet (2018-02-16). "Assessment of Convolution Neural Networks for Surficial Geology Mapping in the South Rae Geological Region, Northwest Territories, Canada". Remote Sensing. 10 (2): 307. Bibcode:2018RemS...10..307L. doi:10.3390/rs10020307. ISSN 2072-4292. https://doi.org/10.3390%2Frs10020307
Culverhouse, PF; Williams, R; Reguera, B; Herry, V; González-Gil, S (2003). "Do experts make mistakes? A comparison of human and machine identification of dinoflagellates". Marine Ecology Progress Series. 247: 17–25. Bibcode:2003MEPS..247...17C. doi:10.3354/meps247017. ISSN 0171-8630. https://doi.org/10.3354%2Fmeps247017
Culverhouse, PF; Williams, R; Reguera, B; Herry, V; González-Gil, S (2003). "Do experts make mistakes? A comparison of human and machine identification of dinoflagellates". Marine Ecology Progress Series. 247: 17–25. Bibcode:2003MEPS..247...17C. doi:10.3354/meps247017. ISSN 0171-8630. https://doi.org/10.3354%2Fmeps247017
Culverhouse, PF; Williams, R; Reguera, B; Herry, V; González-Gil, S (2003). "Do experts make mistakes? A comparison of human and machine identification of dinoflagellates". Marine Ecology Progress Series. 247: 17–25. Bibcode:2003MEPS..247...17C. doi:10.3354/meps247017. ISSN 0171-8630. https://doi.org/10.3354%2Fmeps247017
Culverhouse, PF; Williams, R; Reguera, B; Herry, V; González-Gil, S (2003). "Do experts make mistakes? A comparison of human and machine identification of dinoflagellates". Marine Ecology Progress Series. 247: 17–25. Bibcode:2003MEPS..247...17C. doi:10.3354/meps247017. ISSN 0171-8630. https://doi.org/10.3354%2Fmeps247017
Loyola-Gonzalez, Octavio (2019). "Black-Box vs. White-Box: Understanding Their Advantages and Weaknesses From a Practical Point of View". IEEE Access. 7: 154096–154113. Bibcode:2019IEEEA...7o4096L. doi:10.1109/ACCESS.2019.2949286. ISSN 2169-3536. S2CID 207831043. https://doi.org/10.1109%2FACCESS.2019.2949286
Kumar, Chandan; Chatterjee, Snehamoy; Oommen, Thomas; Guha, Arindam (April 2020). "Automated lithological mapping by integrating spectral enhancement techniques and machine learning algorithms using AVIRIS-NG hyperspectral data in Gold-bearing granite-greenstone rocks in Hutti, India". International Journal of Applied Earth Observation and Geoinformation. 86: 102006. Bibcode:2020IJAEO..8602006K. doi:10.1016/j.jag.2019.102006. ISSN 0303-2434. S2CID 210040191. https://doi.org/10.1016%2Fj.jag.2019.102006
Loyola-Gonzalez, Octavio (2019). "Black-Box vs. White-Box: Understanding Their Advantages and Weaknesses From a Practical Point of View". IEEE Access. 7: 154096–154113. Bibcode:2019IEEEA...7o4096L. doi:10.1109/ACCESS.2019.2949286. ISSN 2169-3536. S2CID 207831043. https://doi.org/10.1109%2FACCESS.2019.2949286
Marjanović, Miloš; Kovačević, Miloš; Bajat, Branislav; Voženílek, Vít (November 2011). "Landslide susceptibility assessment using SVM machine learning algorithm". Engineering Geology. 123 (3): 225–234. Bibcode:2011EngGe.123..225M. doi:10.1016/j.enggeo.2011.09.006. ISSN 0013-7952. https://dx.doi.org/10.1016/j.enggeo.2011.09.006
Marjanović, Miloš; Kovačević, Miloš; Bajat, Branislav; Voženílek, Vít (November 2011). "Landslide susceptibility assessment using SVM machine learning algorithm". Engineering Geology. 123 (3): 225–234. Bibcode:2011EngGe.123..225M. doi:10.1016/j.enggeo.2011.09.006. ISSN 0013-7952. https://dx.doi.org/10.1016/j.enggeo.2011.09.006
Bhattacharya, B.; Solomatine, D.P. (March 2006). "Machine learning in soil classification". Neural Networks. 19 (2): 186–195. doi:10.1016/j.neunet.2006.01.005. ISSN 0893-6080. PMID 16530382. S2CID 14421859. https://dx.doi.org/10.1016/j.neunet.2006.01.005
"Geologic mapping (UB) - AAPG Wiki". wiki.aapg.org. Retrieved 2024-06-27. https://wiki.aapg.org/Geologic_mapping_(UB)#:~:text=Geological%20maps%20give%20informations%20about,had%20occurred%20in%20earlier%20times.
Harvey, A. S.; Fotopoulos, G. (2016-06-23). "Geological Mapping Using Machine Learning Algorithms". ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. XLI-B8: 423–430. doi:10.5194/isprsarchives-xli-b8-423-2016. ISSN 2194-9034. https://doi.org/10.5194%2Fisprsarchives-xli-b8-423-2016
Mattikalli, N (January 1997). "Soil color modeling for the visible and near-infrared bands of Landsat sensors using laboratory spectral measurements". Remote Sensing of Environment. 59 (1): 14–28. Bibcode:1997RSEnv..59...14M. doi:10.1016/s0034-4257(96)00075-2. ISSN 0034-4257. https://dx.doi.org/10.1016/s0034-4257(96)00075-2
Sang, Xuejia; Xue, Linfu; Ran, Xiangjin; Li, Xiaoshun; Liu, Jiwen; Liu, Zeyu (2020-02-05). "Intelligent High-Resolution Geological Mapping Based on SLIC-CNN". ISPRS International Journal of Geo-Information. 9 (2): 99. Bibcode:2020IJGI....9...99S. doi:10.3390/ijgi9020099. ISSN 2220-9964. https://doi.org/10.3390%2Fijgi9020099
Latifovic, Rasim; Pouliot, Darren; Campbell, Janet (2018-02-16). "Assessment of Convolution Neural Networks for Surficial Geology Mapping in the South Rae Geological Region, Northwest Territories, Canada". Remote Sensing. 10 (2): 307. Bibcode:2018RemS...10..307L. doi:10.3390/rs10020307. ISSN 2072-4292. https://doi.org/10.3390%2Frs10020307
Kumar, Chandan; Chatterjee, Snehamoy; Oommen, Thomas; Guha, Arindam (April 2020). "Automated lithological mapping by integrating spectral enhancement techniques and machine learning algorithms using AVIRIS-NG hyperspectral data in Gold-bearing granite-greenstone rocks in Hutti, India". International Journal of Applied Earth Observation and Geoinformation. 86: 102006. Bibcode:2020IJAEO..8602006K. doi:10.1016/j.jag.2019.102006. ISSN 0303-2434. S2CID 210040191. https://doi.org/10.1016%2Fj.jag.2019.102006
Sang, Xuejia; Xue, Linfu; Ran, Xiangjin; Li, Xiaoshun; Liu, Jiwen; Liu, Zeyu (2020-02-05). "Intelligent High-Resolution Geological Mapping Based on SLIC-CNN". ISPRS International Journal of Geo-Information. 9 (2): 99. Bibcode:2020IJGI....9...99S. doi:10.3390/ijgi9020099. ISSN 2220-9964. https://doi.org/10.3390%2Fijgi9020099
Harvey, A. S.; Fotopoulos, G. (2016-06-23). "Geological Mapping Using Machine Learning Algorithms". ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. XLI-B8: 423–430. doi:10.5194/isprsarchives-xli-b8-423-2016. ISSN 2194-9034. https://doi.org/10.5194%2Fisprsarchives-xli-b8-423-2016
Sang, Xuejia; Xue, Linfu; Ran, Xiangjin; Li, Xiaoshun; Liu, Jiwen; Liu, Zeyu (2020-02-05). "Intelligent High-Resolution Geological Mapping Based on SLIC-CNN". ISPRS International Journal of Geo-Information. 9 (2): 99. Bibcode:2020IJGI....9...99S. doi:10.3390/ijgi9020099. ISSN 2220-9964. https://doi.org/10.3390%2Fijgi9020099
Kumar, Chandan; Chatterjee, Snehamoy; Oommen, Thomas; Guha, Arindam (April 2020). "Automated lithological mapping by integrating spectral enhancement techniques and machine learning algorithms using AVIRIS-NG hyperspectral data in Gold-bearing granite-greenstone rocks in Hutti, India". International Journal of Applied Earth Observation and Geoinformation. 86: 102006. Bibcode:2020IJAEO..8602006K. doi:10.1016/j.jag.2019.102006. ISSN 0303-2434. S2CID 210040191. https://doi.org/10.1016%2Fj.jag.2019.102006
Costa, Iago; Tavares, Felipe; Oliveira, Junny (April 2019). "Predictive lithological mapping through machine learning methods: a case study in the Cinzento Lineament, Carajás Province, Brazil". Journal of the Geological Survey of Brazil. 2 (1): 26–36. doi:10.29396/jgsb.2019.v2.n1.3. ISSN 2595-1939. S2CID 134822423. https://doi.org/10.29396%2Fjgsb.2019.v2.n1.3
Radford, D. D., Cracknell, M. J., Roach, M. J., & Cumming, G. V. (2018). Geological mapping in western Tasmania using radar and random forests. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(9), 3075-3087.
Wang, Y., Ksienzyk, A. K., Liu, M., & Brönner, M. (2021). Multigeophysical data integration using cluster analysis: assisting geological mapping in Trøndelag, Mid-Norway. Geophysical Journal International, 225(2), 1142-1157.
Sang, Xuejia; Xue, Linfu; Ran, Xiangjin; Li, Xiaoshun; Liu, Jiwen; Liu, Zeyu (2020-02-05). "Intelligent High-Resolution Geological Mapping Based on SLIC-CNN". ISPRS International Journal of Geo-Information. 9 (2): 99. Bibcode:2020IJGI....9...99S. doi:10.3390/ijgi9020099. ISSN 2220-9964. https://doi.org/10.3390%2Fijgi9020099
Latifovic, Rasim; Pouliot, Darren; Campbell, Janet (2018-02-16). "Assessment of Convolution Neural Networks for Surficial Geology Mapping in the South Rae Geological Region, Northwest Territories, Canada". Remote Sensing. 10 (2): 307. Bibcode:2018RemS...10..307L. doi:10.3390/rs10020307. ISSN 2072-4292. https://doi.org/10.3390%2Frs10020307
"Phillips River landslide hazard mapping project", Landslide Risk Management, CRC Press, pp. 457–466, 2005-06-30, doi:10.1201/9781439833711-28, ISBN 9780429151354, retrieved 2021-11-12 9780429151354
Marjanović, Miloš; Kovačević, Miloš; Bajat, Branislav; Voženílek, Vít (November 2011). "Landslide susceptibility assessment using SVM machine learning algorithm". Engineering Geology. 123 (3): 225–234. Bibcode:2011EngGe.123..225M. doi:10.1016/j.enggeo.2011.09.006. ISSN 0013-7952. https://dx.doi.org/10.1016/j.enggeo.2011.09.006
Marjanović, Miloš; Kovačević, Miloš; Bajat, Branislav; Voženílek, Vít (November 2011). "Landslide susceptibility assessment using SVM machine learning algorithm". Engineering Geology. 123 (3): 225–234. Bibcode:2011EngGe.123..225M. doi:10.1016/j.enggeo.2011.09.006. ISSN 0013-7952. https://dx.doi.org/10.1016/j.enggeo.2011.09.006
Chauhan, S., Sharma, M., Arora, M. K., & Gupta, N. K. (2010). Landslide susceptibility zonation through ratings derived from artificial neural network. International Journal of Applied Earth Observation and Geoinformation, 12(5), 340-350.
Biswajeet, Pradhan; Saro, Lee (November 2007). "Utilization of Optical Remote Sensing Data and GIS Tools for Regional Landslide Hazard Analysis Using an Artificial Neural Network Model". Earth Science Frontiers. 14 (6): 143–151. Bibcode:2007ESF....14..143B. doi:10.1016/s1872-5791(08)60008-1. ISSN 1872-5791. https://dx.doi.org/10.1016/s1872-5791(08)60008-1
Dou, Jie; Yamagishi, Hiromitsu; Pourghasemi, Hamid Reza; Yunus, Ali P.; Song, Xuan; Xu, Yueren; Zhu, Zhongfan (2015-05-19). "An integrated artificial neural network model for the landslide susceptibility assessment of Osado Island, Japan". Natural Hazards. 78 (3): 1749–1776. Bibcode:2015NatHa..78.1749D. doi:10.1007/s11069-015-1799-2. ISSN 0921-030X. S2CID 51960414. https://dx.doi.org/10.1007/s11069-015-1799-2
Marjanović, Miloš; Kovačević, Miloš; Bajat, Branislav; Voženílek, Vít (November 2011). "Landslide susceptibility assessment using SVM machine learning algorithm". Engineering Geology. 123 (3): 225–234. Bibcode:2011EngGe.123..225M. doi:10.1016/j.enggeo.2011.09.006. ISSN 0013-7952. https://dx.doi.org/10.1016/j.enggeo.2011.09.006
Marjanović, Miloš; Kovačević, Miloš; Bajat, Branislav; Voženílek, Vít (November 2011). "Landslide susceptibility assessment using SVM machine learning algorithm". Engineering Geology. 123 (3): 225–234. Bibcode:2011EngGe.123..225M. doi:10.1016/j.enggeo.2011.09.006. ISSN 0013-7952. https://dx.doi.org/10.1016/j.enggeo.2011.09.006
Kawabata, Daisaku; Bandibas, Joel (December 2009). "Landslide susceptibility mapping using geological data, a DEM from ASTER images and an Artificial Neural Network (ANN)". Geomorphology. 113 (1–2): 97–109. Bibcode:2009Geomo.113...97K. doi:10.1016/j.geomorph.2009.06.006. ISSN 0169-555X. https://dx.doi.org/10.1016/j.geomorph.2009.06.006
Marjanović, Miloš; Kovačević, Miloš; Bajat, Branislav; Voženílek, Vít (November 2011). "Landslide susceptibility assessment using SVM machine learning algorithm". Engineering Geology. 123 (3): 225–234. Bibcode:2011EngGe.123..225M. doi:10.1016/j.enggeo.2011.09.006. ISSN 0013-7952. https://dx.doi.org/10.1016/j.enggeo.2011.09.006
Marjanović, Miloš; Kovačević, Miloš; Bajat, Branislav; Voženílek, Vít (November 2011). "Landslide susceptibility assessment using SVM machine learning algorithm". Engineering Geology. 123 (3): 225–234. Bibcode:2011EngGe.123..225M. doi:10.1016/j.enggeo.2011.09.006. ISSN 0013-7952. https://dx.doi.org/10.1016/j.enggeo.2011.09.006
Kawabata, Daisaku; Bandibas, Joel (December 2009). "Landslide susceptibility mapping using geological data, a DEM from ASTER images and an Artificial Neural Network (ANN)". Geomorphology. 113 (1–2): 97–109. Bibcode:2009Geomo.113...97K. doi:10.1016/j.geomorph.2009.06.006. ISSN 0169-555X. https://dx.doi.org/10.1016/j.geomorph.2009.06.006
Chauhan, S., Sharma, M., Arora, M. K., & Gupta, N. K. (2010). Landslide susceptibility zonation through ratings derived from artificial neural network. International Journal of Applied Earth Observation and Geoinformation, 12(5), 340-350.
Biswajeet, Pradhan; Saro, Lee (November 2007). "Utilization of Optical Remote Sensing Data and GIS Tools for Regional Landslide Hazard Analysis Using an Artificial Neural Network Model". Earth Science Frontiers. 14 (6): 143–151. Bibcode:2007ESF....14..143B. doi:10.1016/s1872-5791(08)60008-1. ISSN 1872-5791. https://dx.doi.org/10.1016/s1872-5791(08)60008-1
"International society for rock mechanics commission on standardization of laboratory and field tests". International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. 15 (6): 319–368. December 1978. doi:10.1016/0148-9062(78)91472-9. ISSN 0148-9062. https://dx.doi.org/10.1016/0148-9062(78)91472-9
Byun, Hoon; Kim, Jineon; Yoon, Dongyoung; Kang, Il-Seok; Song, Jae-Joon (2021-07-08). "A deep convolutional neural network for rock fracture image segmentation". Earth Science Informatics. 14 (4): 1937–1951. Bibcode:2021EScIn..14.1937B. doi:10.1007/s12145-021-00650-1. ISSN 1865-0473. S2CID 235762914. https://dx.doi.org/10.1007/s12145-021-00650-1
Byun, Hoon; Kim, Jineon; Yoon, Dongyoung; Kang, Il-Seok; Song, Jae-Joon (2021-07-08). "A deep convolutional neural network for rock fracture image segmentation". Earth Science Informatics. 14 (4): 1937–1951. Bibcode:2021EScIn..14.1937B. doi:10.1007/s12145-021-00650-1. ISSN 1865-0473. S2CID 235762914. https://dx.doi.org/10.1007/s12145-021-00650-1
Byun, Hoon; Kim, Jineon; Yoon, Dongyoung; Kang, Il-Seok; Song, Jae-Joon (2021-07-08). "A deep convolutional neural network for rock fracture image segmentation". Earth Science Informatics. 14 (4): 1937–1951. Bibcode:2021EScIn..14.1937B. doi:10.1007/s12145-021-00650-1. ISSN 1865-0473. S2CID 235762914. https://dx.doi.org/10.1007/s12145-021-00650-1
Byun, Hoon; Kim, Jineon; Yoon, Dongyoung; Kang, Il-Seok; Song, Jae-Joon (2021-07-08). "A deep convolutional neural network for rock fracture image segmentation". Earth Science Informatics. 14 (4): 1937–1951. Bibcode:2021EScIn..14.1937B. doi:10.1007/s12145-021-00650-1. ISSN 1865-0473. S2CID 235762914. https://dx.doi.org/10.1007/s12145-021-00650-1
Byun, Hoon; Kim, Jineon; Yoon, Dongyoung; Kang, Il-Seok; Song, Jae-Joon (2021-07-08). "A deep convolutional neural network for rock fracture image segmentation". Earth Science Informatics. 14 (4): 1937–1951. Bibcode:2021EScIn..14.1937B. doi:10.1007/s12145-021-00650-1. ISSN 1865-0473. S2CID 235762914. https://dx.doi.org/10.1007/s12145-021-00650-1
Byun, Hoon; Kim, Jineon; Yoon, Dongyoung; Kang, Il-Seok; Song, Jae-Joon (2021-07-08). "A deep convolutional neural network for rock fracture image segmentation". Earth Science Informatics. 14 (4): 1937–1951. Bibcode:2021EScIn..14.1937B. doi:10.1007/s12145-021-00650-1. ISSN 1865-0473. S2CID 235762914. https://dx.doi.org/10.1007/s12145-021-00650-1
Byun, Hoon; Kim, Jineon; Yoon, Dongyoung; Kang, Il-Seok; Song, Jae-Joon (2021-07-08). "A deep convolutional neural network for rock fracture image segmentation". Earth Science Informatics. 14 (4): 1937–1951. Bibcode:2021EScIn..14.1937B. doi:10.1007/s12145-021-00650-1. ISSN 1865-0473. S2CID 235762914. https://dx.doi.org/10.1007/s12145-021-00650-1
Repasky, Kevin (2014-03-31). Development and Deployment of a Compact Eye-Safe Scanning Differential absorption Lidar (DIAL) for Spatial Mapping of Carbon Dioxide for Monitoring/Verification/Accounting at Geologic Sequestration Sites (Report). doi:10.2172/1155030. OSTI 1155030. https://dx.doi.org/10.2172/1155030
Bellante, G.J.; Powell, S.L.; Lawrence, R.L.; Repasky, K.S.; Dougher, T.A.O. (March 2013). "Aerial detection of a simulated CO2 leak from a geologic sequestration site using hyperspectral imagery". International Journal of Greenhouse Gas Control. 13: 124–137. Bibcode:2013IJGGC..13..124B. doi:10.1016/j.ijggc.2012.11.034. ISSN 1750-5836. https://dx.doi.org/10.1016/j.ijggc.2012.11.034
Bateson, L.; Vellico, M.; Beaubien, S.; Pearce, J.; Annunziatellis, A.; Ciotoli, G.; Coren, F.; Lombardi, S.; Marsh, S. (July 2008). "The application of remote-sensing techniques to monitor CO2-storage sites for surface leakage: Method development and testing at Latera (Italy) where naturally produced CO2 is leaking to the atmosphere". International Journal of Greenhouse Gas Control. 2 (3): 388–400. Bibcode:2008IJGGC...2..388B. doi:10.1016/j.ijggc.2007.12.005. ISSN 1750-5836. https://dx.doi.org/10.1016/j.ijggc.2007.12.005
Bateson, L.; Vellico, M.; Beaubien, S.; Pearce, J.; Annunziatellis, A.; Ciotoli, G.; Coren, F.; Lombardi, S.; Marsh, S. (July 2008). "The application of remote-sensing techniques to monitor CO2-storage sites for surface leakage: Method development and testing at Latera (Italy) where naturally produced CO2 is leaking to the atmosphere". International Journal of Greenhouse Gas Control. 2 (3): 388–400. Bibcode:2008IJGGC...2..388B. doi:10.1016/j.ijggc.2007.12.005. ISSN 1750-5836. https://dx.doi.org/10.1016/j.ijggc.2007.12.005
Bateson, L.; Vellico, M.; Beaubien, S.; Pearce, J.; Annunziatellis, A.; Ciotoli, G.; Coren, F.; Lombardi, S.; Marsh, S. (July 2008). "The application of remote-sensing techniques to monitor CO2-storage sites for surface leakage: Method development and testing at Latera (Italy) where naturally produced CO2 is leaking to the atmosphere". International Journal of Greenhouse Gas Control. 2 (3): 388–400. Bibcode:2008IJGGC...2..388B. doi:10.1016/j.ijggc.2007.12.005. ISSN 1750-5836. https://dx.doi.org/10.1016/j.ijggc.2007.12.005
Bateson, L.; Vellico, M.; Beaubien, S.; Pearce, J.; Annunziatellis, A.; Ciotoli, G.; Coren, F.; Lombardi, S.; Marsh, S. (July 2008). "The application of remote-sensing techniques to monitor CO2-storage sites for surface leakage: Method development and testing at Latera (Italy) where naturally produced CO2 is leaking to the atmosphere". International Journal of Greenhouse Gas Control. 2 (3): 388–400. Bibcode:2008IJGGC...2..388B. doi:10.1016/j.ijggc.2007.12.005. ISSN 1750-5836. https://dx.doi.org/10.1016/j.ijggc.2007.12.005
Bateson, L.; Vellico, M.; Beaubien, S.; Pearce, J.; Annunziatellis, A.; Ciotoli, G.; Coren, F.; Lombardi, S.; Marsh, S. (July 2008). "The application of remote-sensing techniques to monitor CO2-storage sites for surface leakage: Method development and testing at Latera (Italy) where naturally produced CO2 is leaking to the atmosphere". International Journal of Greenhouse Gas Control. 2 (3): 388–400. Bibcode:2008IJGGC...2..388B. doi:10.1016/j.ijggc.2007.12.005. ISSN 1750-5836. https://dx.doi.org/10.1016/j.ijggc.2007.12.005
Bateson, L.; Vellico, M.; Beaubien, S.; Pearce, J.; Annunziatellis, A.; Ciotoli, G.; Coren, F.; Lombardi, S.; Marsh, S. (July 2008). "The application of remote-sensing techniques to monitor CO2-storage sites for surface leakage: Method development and testing at Latera (Italy) where naturally produced CO2 is leaking to the atmosphere". International Journal of Greenhouse Gas Control. 2 (3): 388–400. Bibcode:2008IJGGC...2..388B. doi:10.1016/j.ijggc.2007.12.005. ISSN 1750-5836. https://dx.doi.org/10.1016/j.ijggc.2007.12.005
Bateson, L.; Vellico, M.; Beaubien, S.; Pearce, J.; Annunziatellis, A.; Ciotoli, G.; Coren, F.; Lombardi, S.; Marsh, S. (July 2008). "The application of remote-sensing techniques to monitor CO2-storage sites for surface leakage: Method development and testing at Latera (Italy) where naturally produced CO2 is leaking to the atmosphere". International Journal of Greenhouse Gas Control. 2 (3): 388–400. Bibcode:2008IJGGC...2..388B. doi:10.1016/j.ijggc.2007.12.005. ISSN 1750-5836. https://dx.doi.org/10.1016/j.ijggc.2007.12.005
Bellante, G.J.; Powell, S.L.; Lawrence, R.L.; Repasky, K.S.; Dougher, T.A.O. (March 2013). "Aerial detection of a simulated CO2 leak from a geologic sequestration site using hyperspectral imagery". International Journal of Greenhouse Gas Control. 13: 124–137. Bibcode:2013IJGGC..13..124B. doi:10.1016/j.ijggc.2012.11.034. ISSN 1750-5836. https://dx.doi.org/10.1016/j.ijggc.2012.11.034
Bieniawski, Z. T. (1988), "The Rock Mass Rating (RMR) System (Geomechanics Classification) in Engineering Practice", Rock Classification Systems for Engineering Purposes, West Conshohocken, PA: ASTM International, pp. 17–17–18, doi:10.1520/stp48461s, ISBN 978-0-8031-6663-9, retrieved 2021-11-12 978-0-8031-6663-9
Chen, Jiayao; Zhou, Mingliang; Zhang, Dongming; Huang, Hongwei; Zhang, Fengshou (March 2021). "Quantification of water inflow in rock tunnel faces via convolutional neural network approach". Automation in Construction. 123: 103526. doi:10.1016/j.autcon.2020.103526. ISSN 0926-5805. S2CID 233849934. https://dx.doi.org/10.1016/j.autcon.2020.103526
Chen, Jiayao; Zhou, Mingliang; Zhang, Dongming; Huang, Hongwei; Zhang, Fengshou (March 2021). "Quantification of water inflow in rock tunnel faces via convolutional neural network approach". Automation in Construction. 123: 103526. doi:10.1016/j.autcon.2020.103526. ISSN 0926-5805. S2CID 233849934. https://dx.doi.org/10.1016/j.autcon.2020.103526
Chen, Jiayao; Zhou, Mingliang; Zhang, Dongming; Huang, Hongwei; Zhang, Fengshou (March 2021). "Quantification of water inflow in rock tunnel faces via convolutional neural network approach". Automation in Construction. 123: 103526. doi:10.1016/j.autcon.2020.103526. ISSN 0926-5805. S2CID 233849934. https://dx.doi.org/10.1016/j.autcon.2020.103526
Bieniawski, Z. T. (1988), "The Rock Mass Rating (RMR) System (Geomechanics Classification) in Engineering Practice", Rock Classification Systems for Engineering Purposes, West Conshohocken, PA: ASTM International, pp. 17–17–18, doi:10.1520/stp48461s, ISBN 978-0-8031-6663-9, retrieved 2021-11-12 978-0-8031-6663-9
Chen, Jiayao; Zhou, Mingliang; Zhang, Dongming; Huang, Hongwei; Zhang, Fengshou (March 2021). "Quantification of water inflow in rock tunnel faces via convolutional neural network approach". Automation in Construction. 123: 103526. doi:10.1016/j.autcon.2020.103526. ISSN 0926-5805. S2CID 233849934. https://dx.doi.org/10.1016/j.autcon.2020.103526
Chen, Jiayao; Zhou, Mingliang; Zhang, Dongming; Huang, Hongwei; Zhang, Fengshou (March 2021). "Quantification of water inflow in rock tunnel faces via convolutional neural network approach". Automation in Construction. 123: 103526. doi:10.1016/j.autcon.2020.103526. ISSN 0926-5805. S2CID 233849934. https://dx.doi.org/10.1016/j.autcon.2020.103526
Chen, Jiayao; Zhou, Mingliang; Zhang, Dongming; Huang, Hongwei; Zhang, Fengshou (March 2021). "Quantification of water inflow in rock tunnel faces via convolutional neural network approach". Automation in Construction. 123: 103526. doi:10.1016/j.autcon.2020.103526. ISSN 0926-5805. S2CID 233849934. https://dx.doi.org/10.1016/j.autcon.2020.103526
Coerts, Alfred (1996). Analysis of static cone penetration test data for subsurface modelling : a methodology. Koninklijk Nederlands Aardrijkskundig Genootschap/Faculteit Ruimtelijke Wetenschappen Universiteit Utrecht. ISBN 90-6809-230-8. OCLC 37725852. 90-6809-230-8
Bhattacharya, B.; Solomatine, D.P. (March 2006). "Machine learning in soil classification". Neural Networks. 19 (2): 186–195. doi:10.1016/j.neunet.2006.01.005. ISSN 0893-6080. PMID 16530382. S2CID 14421859. https://dx.doi.org/10.1016/j.neunet.2006.01.005
Bhattacharya, B.; Solomatine, D.P. (March 2006). "Machine learning in soil classification". Neural Networks. 19 (2): 186–195. doi:10.1016/j.neunet.2006.01.005. ISSN 0893-6080. PMID 16530382. S2CID 14421859. https://dx.doi.org/10.1016/j.neunet.2006.01.005
Bhattacharya, B.; Solomatine, D.P. (March 2006). "Machine learning in soil classification". Neural Networks. 19 (2): 186–195. doi:10.1016/j.neunet.2006.01.005. ISSN 0893-6080. PMID 16530382. S2CID 14421859. https://dx.doi.org/10.1016/j.neunet.2006.01.005
Bhattacharya, B.; Solomatine, D.P. (March 2006). "Machine learning in soil classification". Neural Networks. 19 (2): 186–195. doi:10.1016/j.neunet.2006.01.005. ISSN 0893-6080. PMID 16530382. S2CID 14421859. https://dx.doi.org/10.1016/j.neunet.2006.01.005
Bhattacharya, B.; Solomatine, D.P. (March 2006). "Machine learning in soil classification". Neural Networks. 19 (2): 186–195. doi:10.1016/j.neunet.2006.01.005. ISSN 0893-6080. PMID 16530382. S2CID 14421859. https://dx.doi.org/10.1016/j.neunet.2006.01.005
Bhattacharya, B.; Solomatine, D.P. (March 2006). "Machine learning in soil classification". Neural Networks. 19 (2): 186–195. doi:10.1016/j.neunet.2006.01.005. ISSN 0893-6080. PMID 16530382. S2CID 14421859. https://dx.doi.org/10.1016/j.neunet.2006.01.005
Zhang, Ye; Wang, Gang; Li, Mingchao; Han, Shuai (2018-12-04). "Automated Classification Analysis of Geological Structures Based on Images Data and Deep Learning Model". Applied Sciences. 8 (12): 2493. doi:10.3390/app8122493. ISSN 2076-3417. https://doi.org/10.3390%2Fapp8122493
Zhang, Ye; Wang, Gang; Li, Mingchao; Han, Shuai (2018-12-04). "Automated Classification Analysis of Geological Structures Based on Images Data and Deep Learning Model". Applied Sciences. 8 (12): 2493. doi:10.3390/app8122493. ISSN 2076-3417. https://doi.org/10.3390%2Fapp8122493
Zhang, Ye; Wang, Gang; Li, Mingchao; Han, Shuai (2018-12-04). "Automated Classification Analysis of Geological Structures Based on Images Data and Deep Learning Model". Applied Sciences. 8 (12): 2493. doi:10.3390/app8122493. ISSN 2076-3417. https://doi.org/10.3390%2Fapp8122493
Zhang, Ye; Wang, Gang; Li, Mingchao; Han, Shuai (2018-12-04). "Automated Classification Analysis of Geological Structures Based on Images Data and Deep Learning Model". Applied Sciences. 8 (12): 2493. doi:10.3390/app8122493. ISSN 2076-3417. https://doi.org/10.3390%2Fapp8122493
Li, Zefeng; Meier, Men-Andrin; Hauksson, Egill; Zhan, Zhongwen; Andrews, Jennifer (2018-05-28). "Machine Learning Seismic Wave Discrimination: Application to Earthquake Early Warning". Geophysical Research Letters. 45 (10): 4773–4779. Bibcode:2018GeoRL..45.4773L. doi:10.1029/2018gl077870. ISSN 0094-8276. S2CID 54926314. https://doi.org/10.1029%2F2018gl077870
Li, Zefeng; Meier, Men-Andrin; Hauksson, Egill; Zhan, Zhongwen; Andrews, Jennifer (2018-05-28). "Machine Learning Seismic Wave Discrimination: Application to Earthquake Early Warning". Geophysical Research Letters. 45 (10): 4773–4779. Bibcode:2018GeoRL..45.4773L. doi:10.1029/2018gl077870. ISSN 0094-8276. S2CID 54926314. https://doi.org/10.1029%2F2018gl077870
Rouet-Leduc, Bertrand; Hulbert, Claudia; Lubbers, Nicholas; Barros, Kipton; Humphreys, Colin J.; Johnson, Paul A. (2017-09-22). "Machine Learning Predicts Laboratory Earthquakes". Geophysical Research Letters. 44 (18): 9276–9282. arXiv:1702.05774. Bibcode:2017GeoRL..44.9276R. doi:10.1002/2017gl074677. ISSN 0094-8276. S2CID 118842086. https://dx.doi.org/10.1002/2017gl074677
Li, Zefeng; Meier, Men-Andrin; Hauksson, Egill; Zhan, Zhongwen; Andrews, Jennifer (2018-05-28). "Machine Learning Seismic Wave Discrimination: Application to Earthquake Early Warning". Geophysical Research Letters. 45 (10): 4773–4779. Bibcode:2018GeoRL..45.4773L. doi:10.1029/2018gl077870. ISSN 0094-8276. S2CID 54926314. https://doi.org/10.1029%2F2018gl077870
Rouet-Leduc, Bertrand; Hulbert, Claudia; Lubbers, Nicholas; Barros, Kipton; Humphreys, Colin J.; Johnson, Paul A. (2017-09-22). "Machine Learning Predicts Laboratory Earthquakes". Geophysical Research Letters. 44 (18): 9276–9282. arXiv:1702.05774. Bibcode:2017GeoRL..44.9276R. doi:10.1002/2017gl074677. ISSN 0094-8276. S2CID 118842086. https://dx.doi.org/10.1002/2017gl074677
Kirchner, James W. (March 2006). "Getting the right answers for the right reasons: Linking measurements, analyses, and models to advance the science of hydrology". Water Resources Research. 42 (3). Bibcode:2006WRR....42.3S04K. doi:10.1029/2005wr004362. ISSN 0043-1397. S2CID 2089939. https://dx.doi.org/10.1029/2005wr004362
Thessen, Anne (2016-06-27). "Adoption of Machine Learning Techniques in Ecology and Earth Science". One Ecosystem. 1: e8621. Bibcode:2016OneEc...1E8621T. doi:10.3897/oneeco.1.e8621. ISSN 2367-8194. https://doi.org/10.3897%2Foneeco.1.e8621
Petty, T.R.; Dhingra, P. (2017-08-08). "Streamflow Hydrology Estimate Using Machine Learning (SHEM)". JAWRA Journal of the American Water Resources Association. 54 (1): 55–68. doi:10.1111/1752-1688.12555. ISSN 1093-474X. S2CID 135100027. https://dx.doi.org/10.1111/1752-1688.12555
Thessen, Anne (2016-06-27). "Adoption of Machine Learning Techniques in Ecology and Earth Science". One Ecosystem. 1: e8621. Bibcode:2016OneEc...1E8621T. doi:10.3897/oneeco.1.e8621. ISSN 2367-8194. https://doi.org/10.3897%2Foneeco.1.e8621
Karpatne, Anuj; Ebert-Uphoff, Imme; Ravela, Sai; Babaie, Hassan Ali; Kumar, Vipin (2019-08-01). "Machine Learning for the Geosciences: Challenges and Opportunities". IEEE Transactions on Knowledge and Data Engineering. 31 (8): 1544–1554. arXiv:1711.04708. doi:10.1109/tkde.2018.2861006. ISSN 1041-4347. S2CID 42476116. https://dx.doi.org/10.1109/tkde.2018.2861006
Zhang, Ye; Wang, Gang; Li, Mingchao; Han, Shuai (2018-12-04). "Automated Classification Analysis of Geological Structures Based on Images Data and Deep Learning Model". Applied Sciences. 8 (12): 2493. doi:10.3390/app8122493. ISSN 2076-3417. https://doi.org/10.3390%2Fapp8122493
Petty, T.R.; Dhingra, P. (2017-08-08). "Streamflow Hydrology Estimate Using Machine Learning (SHEM)". JAWRA Journal of the American Water Resources Association. 54 (1): 55–68. doi:10.1111/1752-1688.12555. ISSN 1093-474X. S2CID 135100027. https://dx.doi.org/10.1111/1752-1688.12555
Farrar, Donald E.; Glauber, Robert R. (February 1967). "Multicollinearity in Regression Analysis: The Problem Revisited". The Review of Economics and Statistics. 49 (1): 92. doi:10.2307/1937887. hdl:1721.1/48530. ISSN 0034-6535. JSTOR 1937887. https://dx.doi.org/10.2307/1937887
Chen, Jiayao; Zhou, Mingliang; Zhang, Dongming; Huang, Hongwei; Zhang, Fengshou (March 2021). "Quantification of water inflow in rock tunnel faces via convolutional neural network approach". Automation in Construction. 123: 103526. doi:10.1016/j.autcon.2020.103526. ISSN 0926-5805. S2CID 233849934. https://dx.doi.org/10.1016/j.autcon.2020.103526
Taghizadeh-Mehrjardi, R.; Nabiollahi, K.; Kerry, R. (March 2016). "Digital mapping of soil organic carbon at multiple depths using different data mining techniques in Baneh region, Iran". Geoderma. 266: 98–110. Bibcode:2016Geode.266...98T. doi:10.1016/j.geoderma.2015.12.003. ISSN 0016-7061. https://dx.doi.org/10.1016/j.geoderma.2015.12.003
Delibasic, Boris; Vukicevic, Milan; Jovanovic, Milos; Suknovic, Milija (August 2013). "White-Box or Black-Box Decision Tree Algorithms: Which to Use in Education?". IEEE Transactions on Education. 56 (3): 287–291. Bibcode:2013ITEdu..56..287D. doi:10.1109/te.2012.2217342. ISSN 0018-9359. S2CID 11792899. https://dx.doi.org/10.1109/te.2012.2217342
Merghadi, Abdelaziz; Yunus, Ali P.; Dou, Jie; Whiteley, Jim; ThaiPham, Binh; Bui, Dieu Tien; Avtar, Ram; Abderrahmane, Boumezbeur (August 2020). "Machine learning methods for landslide susceptibility studies: A comparative overview of algorithm performance". Earth-Science Reviews. 207: 103225. Bibcode:2020ESRv..20703225M. doi:10.1016/j.earscirev.2020.103225. ISSN 0012-8252. S2CID 225816933. https://dx.doi.org/10.1016/j.earscirev.2020.103225