The developable surfaces which can be realized in three-dimensional space include:
Formally, in mathematics, a developable surface is a surface with zero Gaussian curvature. One consequence of this is that all "developable" surfaces embedded in 3D-space are ruled surfaces (though hyperboloids are examples of ruled surfaces which are not developable). Because of this, many developable surfaces can be visualised as the surface formed by moving a straight line in space. For example, a cone is formed by keeping one end-point of a line fixed whilst moving the other end-point in a circle.
Developable surfaces have several practical applications.
Many cartographic projections involve projecting the Earth to a developable surface and then "unrolling" the surface into a region on the plane.
Since developable surfaces may be constructed by bending a flat sheet, they are also important in manufacturing objects from sheet metal, cardboard, and plywood. An industry which uses developed surfaces extensively is shipbuilding.4
Developable Mechanisms are mechanisms that conform to a developable surface and can exhibit motion (deploy) off the surface.56
Most smooth surfaces (and most surfaces in general) are not developable surfaces. Non-developable surfaces are variously referred to as having "double curvature", "doubly curved", "compound curvature", "non-zero Gaussian curvature", etc.
Some of the most often-used non-developable surfaces are:
Many gridshells and tensile structures and similar constructions gain strength by using (any) doubly curved form.
Chalfant, Julie S.; Maekawa, Takashi (September 1998). "Design for Manufacturing Using B-Spline Developable Surfaces". Journal of Ship Research. 42 (3): 207–215. doi:10.5957/jsr.1998.42.3.207. /wiki/Doi_(identifier) ↩
Hilbert, David; Cohn-Vossen, Stephan (1952), Geometry and the Imagination (2nd ed.), New York: Chelsea, pp. 341–342, ISBN 978-0-8284-1087-8 {{citation}}: ISBN / Date incompatibility (help) 978-0-8284-1087-8 ↩
Borrelli, V.; Jabrane, S.; Lazarus, F.; Thibert, B. (April 2012), "Flat tori in three-dimensional space and convex integration", Proceedings of the National Academy of Sciences, 109 (19): 7218–7223, doi:10.1073/pnas.1118478109, PMC 3358891, PMID 22523238. /wiki/Doi_(identifier) ↩
Nolan, T. J. (1970), Computer-Aided Design of Developable Hull Surfaces, Ann Arbor: University Microfilms International ↩
"Developable Mechanisms | About Developable Mechanisms". compliantmechanisms. Retrieved 2019-02-14. https://www.compliantmechanisms.byu.edu/about-developable-mechanisms ↩
Howell, Larry L.; Lang, Robert J.; Magleby, Spencer P.; Zimmerman, Trent K.; Nelson, Todd G. (2019-02-13). "Developable mechanisms on developable surfaces". Science Robotics. 4 (27): eaau5171. doi:10.1126/scirobotics.aau5171. ISSN 2470-9476. PMID 33137737. https://doi.org/10.1126%2Fscirobotics.aau5171 ↩