If X i {\displaystyle X_{i}} are k independent, normally distributed random variables with means μ i {\displaystyle \mu _{i}} and variances σ i 2 {\displaystyle \sigma _{i}^{2}} , then the statistic
is distributed according to the noncentral chi distribution. The noncentral chi distribution has two parameters: k {\displaystyle k} which specifies the number of degrees of freedom (i.e. the number of X i {\displaystyle X_{i}} ), and λ {\displaystyle \lambda } which is related to the mean of the random variables X i {\displaystyle X_{i}} by:
The probability density function (pdf) is
where I ν ( z ) {\displaystyle I_{\nu }(z)} is a modified Bessel function of the first kind.
The first few raw moments are:
where L n ( a ) ( z ) {\displaystyle L_{n}^{(a)}(z)} is a Laguerre function. Note that the 2 n {\displaystyle n} th moment is the same as the n {\displaystyle n} th moment of the noncentral chi-squared distribution with λ {\displaystyle \lambda } being replaced by λ 2 {\displaystyle \lambda ^{2}} .
Let X j = ( X 1 j , X 2 j ) , j = 1 , 2 , … n {\displaystyle X_{j}=(X_{1j},X_{2j}),j=1,2,\dots n} , be a set of n independent and identically distributed bivariate normal random vectors with marginal distributions N ( μ i , σ i 2 ) , i = 1 , 2 {\displaystyle N(\mu _{i},\sigma _{i}^{2}),i=1,2} , correlation ρ {\displaystyle \rho } , and mean vector and covariance matrix
with Σ {\displaystyle \Sigma } positive definite. Define
Then the joint distribution of U, V is central or noncentral bivariate chi distribution with n degrees of freedom.23 If either or both μ 1 ≠ 0 {\displaystyle \mu _{1}\neq 0} or μ 2 ≠ 0 {\displaystyle \mu _{2}\neq 0} the distribution is a noncentral bivariate chi distribution.
J. H. Park (1961). "Moments of the Generalized Rayleigh Distribution". Quarterly of Applied Mathematics. 19 (1): 45–49. doi:10.1090/qam/119222. JSTOR 43634840. https://doi.org/10.1090%2Fqam%2F119222 ↩
Marakatha Krishnan (1967). "The Noncentral Bivariate Chi Distribution". SIAM Review. 9 (4): 708–714. Bibcode:1967SIAMR...9..708K. doi:10.1137/1009111. /wiki/Bibcode_(identifier) ↩
P. R. Krishnaiah, P. Hagis, Jr. and L. Steinberg (1963). "A note on the bivariate chi distribution". SIAM Review. 5 (2): 140–144. Bibcode:1963SIAMR...5..140K. doi:10.1137/1005034. JSTOR 2027477.{{cite journal}}: CS1 maint: multiple names: authors list (link) /wiki/Bibcode_(identifier) ↩