All smooth morphisms f : X → S {\displaystyle f:X\to S} are equivalent to morphisms locally of finite presentation which are formally smooth. Hence formal smoothness is a slight generalization of smooth morphisms.3
One method for detecting formal smoothness of a scheme is using infinitesimal lifting criterion. For example, using the truncation morphism k [ ε ] / ( ε 3 ) → k [ ε ] / ( ε 2 ) {\displaystyle k[\varepsilon ]/(\varepsilon ^{3})\to k[\varepsilon ]/(\varepsilon ^{2})} the infinitesimal lifting criterion can be described using the commutative square
X ← Spec ( k [ ε ] ( ε 2 ) ) ↓ ↓ S ← Spec ( k [ ε ] ( ε 3 ) ) {\displaystyle {\begin{matrix}X&\leftarrow &{\text{Spec}}\left({\frac {k[\varepsilon ]}{(\varepsilon ^{2})}}\right)\\\downarrow &&\downarrow \\S&\leftarrow &{\text{Spec}}\left({\frac {k[\varepsilon ]}{(\varepsilon ^{3})}}\right)\end{matrix}}}
where X , S ∈ S c h / S {\displaystyle X,S\in Sch/S} . For example, if
X = Spec ( k [ x , y ] ( x y ) ) {\displaystyle X={\text{Spec}}\left({\frac {k[x,y]}{(xy)}}\right)} and Y = Spec ( k ) {\displaystyle Y={\text{Spec}}(k)}
then consider the tangent vector at the origin ( 0 , 0 ) ∈ X ( k ) {\displaystyle (0,0)\in X(k)} given by the ring morphism
k [ x , y ] ( x y ) → k [ ε ] ( ε 2 ) {\displaystyle {\frac {k[x,y]}{(xy)}}\to {\frac {k[\varepsilon ]}{(\varepsilon ^{2})}}}
sending
x ↦ ε y ↦ ε {\displaystyle {\begin{aligned}x&\mapsto \varepsilon \\y&\mapsto \varepsilon \end{aligned}}}
Note because x y ↦ ε 2 = 0 {\displaystyle xy\mapsto \varepsilon ^{2}=0} , this is a valid morphism of commutative rings. Then, since a lifting of this morphism to
Spec ( k [ ε ] ( ε 3 ) ) → X {\displaystyle {\text{Spec}}\left({\frac {k[\varepsilon ]}{(\varepsilon ^{3})}}\right)\to X}
is of the form
x ↦ ε + a ε 2 y ↦ ε + b ε 2 {\displaystyle {\begin{aligned}x&\mapsto \varepsilon +a\varepsilon ^{2}\\y&\mapsto \varepsilon +b\varepsilon ^{2}\end{aligned}}}
and x y ↦ ε 2 + ( a + b ) ε 3 = ε 2 {\displaystyle xy\mapsto \varepsilon ^{2}+(a+b)\varepsilon ^{3}=\varepsilon ^{2}} , there cannot be an infinitesimal lift since this is non-zero, hence X ∈ S c h / k {\displaystyle X\in Sch/k} is not formally smooth. This also proves this morphism is not smooth from the equivalence between formally smooth morphisms locally of finite presentation and smooth morphisms.
Grothendieck, Alexandre; Dieudonné, Jean (1964). "Éléments de géométrie algébrique: IV. Étude locale des schémas et des morphismes de schémas, Première partie". Publications Mathématiques de l'IHÉS. 20: 5–259. doi:10.1007/bf02684747. MR 0173675. /wiki/Alexander_Grothendieck ↩
Grothendieck, Alexandre; Dieudonné, Jean (1967). "Éléments de géométrie algébrique: IV. Étude locale des schémas et des morphismes de schémas, Quatrième partie". Publications Mathématiques de l'IHÉS. 32: 5–361. doi:10.1007/bf02732123. MR 0238860. /wiki/Alexander_Grothendieck ↩
"Lemma 37.11.7 (02H6): Infinitesimal lifting criterion—The Stacks project". stacks.math.columbia.edu. Retrieved 2020-04-07. https://stacks.math.columbia.edu/tag/02H6 ↩