Many primal-dual approximation algorithms are based on the principle of weak duality.3
Consider a linear programming problem,
where A {\displaystyle A} is m × n {\displaystyle m\times n} and b {\displaystyle b} is m × 1 {\displaystyle m\times 1} . The dual problem of (1) is
minimize y ∈ R m b ⊤ y subject to A ⊤ y ≥ c , y ≥ 0. {\displaystyle {\begin{aligned}{\underset {y\in \mathbb {R} ^{m}}{\text{minimize}}}\quad &b^{\top }y\\{\text{subject to}}\quad &A^{\top }y\geq c,\\&y\geq 0.\end{aligned}}}
The weak duality theorem states that c ⊤ x ∗ ≤ b ⊤ y ∗ {\displaystyle c^{\top }x^{*}\leq b^{\top }y^{*}} for every solution x ∗ {\displaystyle x^{*}} to the primal problem (1) and every solution y ∗ {\displaystyle y^{*}} to the dual problem (2).
Namely, if ( x 1 , x 2 , . . . . , x n ) {\displaystyle (x_{1},x_{2},....,x_{n})} is a feasible solution for the primal maximization linear program and ( y 1 , y 2 , . . . . , y m ) {\displaystyle (y_{1},y_{2},....,y_{m})} is a feasible solution for the dual minimization linear program, then the weak duality theorem can be stated as ∑ j = 1 n c j x j ≤ ∑ i = 1 m b i y i {\displaystyle \sum _{j=1}^{n}c_{j}x_{j}\leq \sum _{i=1}^{m}b_{i}y_{i}} , where c j {\displaystyle c_{j}} and b i {\displaystyle b_{i}} are the coefficients of the respective objective functions.
Proof: cTx = xTc ≤ xTATy ≤ bTy
More generally, if x {\displaystyle x} is a feasible solution for the primal maximization problem and y {\displaystyle y} is a feasible solution for the dual minimization problem, then weak duality implies f ( x ) ≤ g ( y ) {\displaystyle f(x)\leq g(y)} where f {\displaystyle f} and g {\displaystyle g} are the objective functions for the primal and dual problems respectively.
Boyd, S. P., Vandenberghe, L. (2004). Convex optimization (PDF). Cambridge University Press. ISBN 978-0-521-83378-3. 978-0-521-83378-3 ↩
Boţ, Radu Ioan; Grad, Sorin-Mihai; Wanka, Gert (2009), Duality in Vector Optimization, Berlin: Springer-Verlag, p. 1, doi:10.1007/978-3-642-02886-1, ISBN 978-3-642-02885-4, MR 2542013. 978-3-642-02885-4 ↩
Gonzalez, Teofilo F. (2007), Handbook of Approximation Algorithms and Metaheuristics, CRC Press, p. 2-12, ISBN 9781420010749. 9781420010749 ↩