The CRISPR interference (CRISPRi) technique was first reported by Lei S. Qi and researchers at the University of California at San Francisco in early 2013. The technology uses a catalytically dead Cas9 (usually denoted as dCas9) protein that lacks endonuclease activity to regulate genes in an RNA-guided manner. Targeting specificity is determined by complementary base-pairing of a single guide RNA (sgRNA) to the genomic locus. sgRNA is a chimeric noncoding RNA that can be subdivided into three regions: a 20 nt base-pairing sequence, a 42 nt dCas9-binding hairpin and a 40 nt terminator (bacteria,
yeast, fruit flies, zebrafish, mice).
When designing a synthetic sgRNA, only the 20 nt base-pairing sequence is modified. Secondary variables must also be considered: off-target effects (for which a simple BLAST run of the base-pairing sequence is required), maintenance of the dCas9-binding hairpin structure, and ensuring that no restriction sites are present in the modified sgRNA, as this may pose a problem in downstream cloning steps. Due to the simplicity of sgRNA design, this technology is amenable to genome-wide scaling.
CRISPRi relies on the generation of catalytically inactive Cas9. This is accomplished by introducing point mutations in the two catalytic residues (D10A and H840A) of the gene encoding Cas9. In doing so, dCas9 is unable to cleave dsDNA but retains the ability to target DNA. Together, sgRNA and dCas9 constitute a minimal system for gene-specific regulation.
Whereas genome-editing by the catalytically active Cas9 nuclease can be accompanied by irreversible off-target genomic alterations, CRISPRi is highly specific with minimal off-target reversible effects for two distinct sgRNA sequences. Nonetheless, several methods have been developed to improve the efficiency of transcriptional modulation. Identification of the transcription start site of a target gene and considering the preferences of sgRNA improves efficiency, as does the presence of accessible chromatin at the target site.
Along with other improvements mentioned, factors such as the distance from the transcription start and the local chromatin state may be critical parameters in determining activation/repression efficiency. Optimization of dCas9 and sgRNA expression, stability, nuclear localization, and interaction will likely allow for further improvement of CRISPRi efficiency in mammalian cells.
A significant portion of the genome (both reporter and endogenous genes) in eukaryotes has been shown to be targetable using lentiviral constructs to express dCas9 and sgRNAs, with comparable efficiency to existing techniques such as RNAi and TALE proteins. In tandem or as its own system, CRISPRi could be used to achieve the same applications as in RNAi.
For bacteria, gene knockdown by CRISPRi has been fully implemented and characterized (off-target analysis, leaky repression) for both Gram-negative E. coli and Gram-positive B. subtilis.
Differential gene expression can be achieved by modifying the efficiency of sgRNA base-pairing to the target loci. In theory, modulating this efficiency can be used to create an allelic series for any given gene, in essence creating a collection of hypo- and hypermorphs. These powerful collections can be used to probe any genetic investigation. For hypomorphs, this allows the incremental reduction of gene function as opposed to the binary nature of gene knockouts and the unpredictability of knockdowns. For hypermorphs, this is in contrast to the conventional method of cloning the gene of interest under promoters with variable strength.
The ability to upregulate gene expression using dCas9-SunTag with a single sgRNA also opens the door to large-scale genetic screens, such as Perturb-seq, to uncover phenotypes that result from increased or decreased gene expression, which will be especially important for understanding the effects of gene regulation in cancer. Furthermore, CRISPRi systems have been shown to be transferable via horizontal gene transfer mechanisms such as bacterial conjugation and specific repression of reporter genes in recipient cells has been demonstrated. CRISPRi could serve as a tool for genetic screening and potentially bacterial population control.
Jensen TI, Mikkelsen NS, Gao Z, Foßelteder J, Pabst G, Axelgaard E, et al. (November 2021). "Targeted regulation of transcription in primary cells using CRISPRa and CRISPRi". Genome Research. 31 (11): 2120–2130. doi:10.1101/gr.275607.121. PMC 8559706. PMID 34407984. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8559706
Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA (February 2013). "Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression". Cell. 152 (5): 1173–1183. doi:10.1016/j.cell.2013.02.022. PMC 3664290. PMID 23452860. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3664290
Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, et al. (March 2007). "CRISPR provides acquired resistance against viruses in prokaryotes". Science. 315 (5819): 1709–1712. Bibcode:2007Sci...315.1709B. doi:10.1126/science.1138140. hdl:20.500.11794/38902. PMID 17379808. S2CID 3888761. /wiki/Bibcode_(identifier)
Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA (February 2013). "Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression". Cell. 152 (5): 1173–1183. doi:10.1016/j.cell.2013.02.022. PMC 3664290. PMID 23452860. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3664290
Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA (March 2013). "RNA-guided editing of bacterial genomes using CRISPR-Cas systems". Nature Biotechnology. 31 (3): 233–239. doi:10.1038/nbt.2508. PMC 3748948. PMID 23360965. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3748948
Peters JM, Colavin A, Shi H, Czarny TL, Larson MH, Wong S, et al. (June 2016). "A Comprehensive, CRISPR-based Functional Analysis of Essential Genes in Bacteria". Cell. 165 (6): 1493–1506. doi:10.1016/j.cell.2016.05.003. PMC 4894308. PMID 27238023. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4894308
Li XT, Jun Y, Erickstad MJ, Brown SD, Parks A, Court DL, Jun S (December 2016). "tCRISPRi: tunable and reversible, one-step control of gene expression". Scientific Reports. 6: 39076. Bibcode:2016NatSR...639076L. doi:10.1038/srep39076. PMC 5171832. PMID 27996021. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5171832
DiCarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM (April 2013). "Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems". Nucleic Acids Research. 41 (7): 4336–4343. doi:10.1093/nar/gkt135. PMC 3627607. PMID 23460208. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3627607
Gratz SJ, Cummings AM, Nguyen JN, Hamm DC, Donohue LK, Harrison MM, et al. (August 2013). "Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease". Genetics. 194 (4): 1029–1035. doi:10.1534/genetics.113.152710. PMC 3730909. PMID 23709638. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3730909
Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD, et al. (March 2013). "Efficient genome editing in zebrafish using a CRISPR-Cas system". Nature Biotechnology. 31 (3): 227–229. doi:10.1038/nbt.2501. PMC 3686313. PMID 23360964. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3686313
Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R (May 2013). "One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering". Cell. 153 (4): 910–918. doi:10.1016/j.cell.2013.04.025. PMC 3969854. PMID 23643243. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3969854
Larson MH, Gilbert LA, Wang X, Lim WA, Weissman JS, Qi LS (November 2013). "CRISPR interference (CRISPRi) for sequence-specific control of gene expression". Nature Protocols. 8 (11): 2180–2196. doi:10.1038/nprot.2013.132. PMC 3922765. PMID 24136345. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3922765
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (August 2012). "A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity". Science. 337 (6096): 816–821. Bibcode:2012Sci...337..816J. doi:10.1126/science.1225829. PMC 6286148. PMID 22745249. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6286148
Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA (February 2013). "Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression". Cell. 152 (5): 1173–1183. doi:10.1016/j.cell.2013.02.022. PMC 3664290. PMID 23452860. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3664290
Vigouroux A, Bikard D (May 2020). "CRISPR Tools To Control Gene Expression in Bacteria". Microbiology and Molecular Biology Reviews. 84 (2). doi:10.1128/MMBR.00077-19. PMC 7117552. PMID 32238445. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7117552
Dhamad AE, Lessner DJ (October 2020). Atomi H (ed.). "A CRISPRi-dCas9 System for Archaea and Its Use To Examine Gene Function during Nitrogen Fixation by Methanosarcina acetivorans". Applied and Environmental Microbiology. 86 (21): e01402–20. Bibcode:2020ApEnM..86E1402D. doi:10.1128/AEM.01402-20. PMC 7580536. PMID 32826220. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7580536
Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA (February 2013). "Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression". Cell. 152 (5): 1173–1183. doi:10.1016/j.cell.2013.02.022. PMC 3664290. PMID 23452860. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3664290
Vigouroux A, Oldewurtel E, Cui L, Bikard D, van Teeffelen S (March 2018). "Tuning dCas9's ability to block transcription enables robust, noiseless knockdown of bacterial genes". Molecular Systems Biology. 14 (3): e7899. doi:10.15252/msb.20177899. PMC 5842579. PMID 29519933. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5842579
Vigouroux A, Oldewurtel E, Cui L, Bikard D, van Teeffelen S (March 2018). "Tuning dCas9's ability to block transcription enables robust, noiseless knockdown of bacterial genes". Molecular Systems Biology. 14 (3): e7899. doi:10.15252/msb.20177899. PMC 5842579. PMID 29519933. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5842579
Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, et al. (July 2013). "CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes". Cell. 154 (2): 442–451. doi:10.1016/j.cell.2013.06.044. PMC 3770145. PMID 23849981. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3770145
Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, et al. (July 2013). "CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes". Cell. 154 (2): 442–451. doi:10.1016/j.cell.2013.06.044. PMC 3770145. PMID 23849981. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3770145
Radzisheuskaya A, Shlyueva D, Müller I, Helin K (October 2016). "Optimizing sgRNA position markedly improves the efficiency of CRISPR/dCas9-mediated transcriptional repression". Nucleic Acids Research. 44 (18): e141. doi:10.1093/nar/gkw583. PMC 5062975. PMID 27353328. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5062975
Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA (February 2013). "Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression". Cell. 152 (5): 1173–1183. doi:10.1016/j.cell.2013.02.022. PMC 3664290. PMID 23452860. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3664290
Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, et al. (July 2013). "CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes". Cell. 154 (2): 442–451. doi:10.1016/j.cell.2013.06.044. PMC 3770145. PMID 23849981. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3770145
Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA (March 2013). "RNA-guided editing of bacterial genomes using CRISPR-Cas systems". Nature Biotechnology. 31 (3): 233–239. doi:10.1038/nbt.2508. PMC 3748948. PMID 23360965. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3748948
Li XT, Jun Y, Erickstad MJ, Brown SD, Parks A, Court DL, Jun S (December 2016). "tCRISPRi: tunable and reversible, one-step control of gene expression". Scientific Reports. 6: 39076. Bibcode:2016NatSR...639076L. doi:10.1038/srep39076. PMC 5171832. PMID 27996021. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5171832
Peters JM, Colavin A, Shi H, Czarny TL, Larson MH, Wong S, et al. (June 2016). "A Comprehensive, CRISPR-based Functional Analysis of Essential Genes in Bacteria". Cell. 165 (6): 1493–1506. doi:10.1016/j.cell.2016.05.003. PMC 4894308. PMID 27238023. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4894308
Dhamad AE, Lessner DJ (October 2020). Atomi H (ed.). "A CRISPRi-dCas9 System for Archaea and Its Use To Examine Gene Function during Nitrogen Fixation by Methanosarcina acetivorans". Applied and Environmental Microbiology. 86 (21): e01402–20. Bibcode:2020ApEnM..86E1402D. doi:10.1128/AEM.01402-20. PMC 7580536. PMID 32826220. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7580536
Larson MH, Gilbert LA, Wang X, Lim WA, Weissman JS, Qi LS (November 2013). "CRISPR interference (CRISPRi) for sequence-specific control of gene expression". Nature Protocols. 8 (11): 2180–2196. doi:10.1038/nprot.2013.132. PMC 3922765. PMID 24136345. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3922765
Chen B, Gilbert LA, Cimini BA, Schnitzbauer J, Zhang W, Li GW, et al. (December 2013). "Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system". Cell. 155 (7): 1479–1491. doi:10.1016/j.cell.2013.12.001. PMC 3918502. PMID 24360272. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3918502
Kearns NA, Genga RM, Enuameh MS, Garber M, Wolfe SA, Maehr R (January 2014). "Cas9 effector-mediated regulation of transcription and differentiation in human pluripotent stem cells". Development. 141 (1): 219–223. doi:10.1242/dev.103341. PMC 3865759. PMID 24346702. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3865759
Hu J, Lei Y, Wong WK, Liu S, Lee KC, He X, et al. (April 2014). "Direct activation of human and mouse Oct4 genes using engineered TALE and Cas9 transcription factors". Nucleic Acids Research. 42 (7): 4375–4390. doi:10.1093/nar/gku109. PMC 3985678. PMID 24500196. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3985678
Takahashi K, Yamanaka S (August 2006). "Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors". Cell. 126 (4): 663–676. doi:10.1016/j.cell.2006.07.024. hdl:2433/159777. PMID 16904174. S2CID 1565219. /wiki/Shinya_Yamanaka
Tanenbaum ME, Gilbert LA, Qi LS, Weissman JS, Vale RD (October 2014). "A protein-tagging system for signal amplification in gene expression and fluorescence imaging". Cell. 159 (3): 635–646. doi:10.1016/j.cell.2014.09.039. PMC 4252608. PMID 25307933. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4252608
Ji W, Lee D, Wong E, Dadlani P, Dinh D, Huang V, et al. (December 2014). "Specific gene repression by CRISPRi system transferred through bacterial conjugation". ACS Synthetic Biology. 3 (12): 929–931. doi:10.1021/sb500036q. PMC 4277763. PMID 25409531. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4277763
Larson MH, Gilbert LA, Wang X, Lim WA, Weissman JS, Qi LS (November 2013). "CRISPR interference (CRISPRi) for sequence-specific control of gene expression". Nature Protocols. 8 (11): 2180–2196. doi:10.1038/nprot.2013.132. PMC 3922765. PMID 24136345. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3922765
Vigouroux A, Oldewurtel E, Cui L, Bikard D, van Teeffelen S (March 2018). "Tuning dCas9's ability to block transcription enables robust, noiseless knockdown of bacterial genes". Molecular Systems Biology. 14 (3): e7899. doi:10.15252/msb.20177899. PMC 5842579. PMID 29519933. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5842579
Hawkins JS, Silvis MR, Koo BM, Peters JM, Jost M, Hearne CC, et al. (2019-10-15). "Modulated efficacy CRISPRi reveals evolutionary conservation of essential gene expression-fitness relationships in bacteria". bioRxiv: 805333. doi:10.1101/805333. S2CID 208583386. Retrieved 2020-01-16. https://www.biorxiv.org/content/10.1101/805333v1
Larson MH, Gilbert LA, Wang X, Lim WA, Weissman JS, Qi LS (November 2013). "CRISPR interference (CRISPRi) for sequence-specific control of gene expression". Nature Protocols. 8 (11): 2180–2196. doi:10.1038/nprot.2013.132. PMC 3922765. PMID 24136345. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3922765
Reis AC, Halper SM, Vezeau GE, Cetnar DP, Hossain A, Clauer PR, Salis HM (November 2019). "Simultaneous repression of multiple bacterial genes using nonrepetitive extra-long sgRNA arrays". Nature Biotechnology. 37 (11): 1294–1301. doi:10.1038/s41587-019-0286-9. OSTI 1569832. PMID 31591552. S2CID 203852115. /wiki/Doi_(identifier)
Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, et al. (July 2013). "CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes". Cell. 154 (2): 442–451. doi:10.1016/j.cell.2013.06.044. PMC 3770145. PMID 23849981. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3770145
Li XT, Jun Y, Erickstad MJ, Brown SD, Parks A, Court DL, Jun S (December 2016). "tCRISPRi: tunable and reversible, one-step control of gene expression". Scientific Reports. 6: 39076. Bibcode:2016NatSR...639076L. doi:10.1038/srep39076. PMC 5171832. PMID 27996021. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5171832
Larson MH, Gilbert LA, Wang X, Lim WA, Weissman JS, Qi LS (November 2013). "CRISPR interference (CRISPRi) for sequence-specific control of gene expression". Nature Protocols. 8 (11): 2180–2196. doi:10.1038/nprot.2013.132. PMC 3922765. PMID 24136345. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3922765
Larson MH, Gilbert LA, Wang X, Lim WA, Weissman JS, Qi LS (November 2013). "CRISPR interference (CRISPRi) for sequence-specific control of gene expression". Nature Protocols. 8 (11): 2180–2196. doi:10.1038/nprot.2013.132. PMC 3922765. PMID 24136345. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3922765
Larson MH, Gilbert LA, Wang X, Lim WA, Weissman JS, Qi LS (November 2013). "CRISPR interference (CRISPRi) for sequence-specific control of gene expression". Nature Protocols. 8 (11): 2180–2196. doi:10.1038/nprot.2013.132. PMC 3922765. PMID 24136345. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3922765
Goyal A, Myacheva K, Groß M, Klingenberg M, Duran Arqué B, Diederichs S (February 2017). "Challenges of CRISPR/Cas9 applications for long non-coding RNA genes". Nucleic Acids Research. 45 (3): e12. doi:10.1093/nar/gkw883. PMC 5388423. PMID 28180319. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5388423
Cui L, Vigouroux A, Rousset F, Varet H, Khanna V, Bikard D (May 2018). "A CRISPRi screen in E. coli reveals sequence-specific toxicity of dCas9". Nature Communications. 9 (1): 1912. Bibcode:2018NatCo...9.1912C. doi:10.1038/s41467-018-04209-5. PMC 5954155. PMID 29765036. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5954155
Depardieu F, Bikard D (February 2020). "Gene silencing with CRISPRi in bacteria and optimization of dCas9 expression levels" (PDF). Methods. Methods for characterizing, applying, and teaching CRISPR-Cas systems. 172: 61–75. doi:10.1016/j.ymeth.2019.07.024. PMID 31377338. S2CID 199436713. https://hal-pasteur.archives-ouvertes.fr/pasteur-02476079/file/Depardieu_Bikard_2020_Gene_silencing.pdf