When m is variable (a part of the input), both problems are strongly NP-hard, by reduction from 3-partition. This means that they have no fully polynomial-time approximation scheme (FPTAS) unless P=NP.
Even when m=2, the problems do not have an FPTAS unless P=NP. This can be shown by a reduction from the equal-cardinality partition problem (EPART):
The following approximation algorithms are known:3
The fair subset sum problem6 (FSSP) is a generalization of SSP in which, after the subset is selected, its items are allocated among two or more agents. The utility of each agent equals the sum of weights of the items allocated to him/her. The goal is that the utility profile satisfies some criterion of fairness, such as the egalitarian rule or the proportional-fair rule. Two variants of the problem are:
Both variants are NP-hard. However, there are pseudopolynomial time algorithms for enumerating all Pareto-optimal solutions when there are two agents:7
Nicosia, Pacifici and Pferschy study the price of fairness, that is, the ratio between the maximum sum of utilities, and the maximum sum of utilities in a fair solution:
In both cases, if the item value is bounded by some constant a, then the POF is bounded by a function of a.8
The multiple knapsack problem (MKP) is a generalization of both the max-sum MSSP and the knapsack problem. In this problem, there are m knapsacks and n items, where each item has both a value and a weight. The goal is to pack as much value as possible into the m bins, such that the total weight in each bin is at most its capacity.
The MKP has a Polynomial-time approximation scheme.9
Caprara, Alberto; Kellerer, Hans; Pferschy, Ulrich (2000-02-01). "The Multiple Subset Sum Problem". SIAM Journal on Optimization. 11 (2): 308–319. doi:10.1137/S1052623498348481. ISSN 1052-6234. https://doi.org/10.1137/S1052623498348481 ↩
Caprara, Alberto; Kellerer, Hans; Pferschy, Ulrich (2000-02-29). "A PTAS for the Multiple Subset Sum Problem with different knapsack capacities". Information Processing Letters. 73 (3–4): 111–118. doi:10.1016/S0020-0190(00)00010-7. ISSN 0020-0190. https://www.sciencedirect.com/science/article/abs/pii/S0020019000000107 ↩
Caprara, Alberto; Kellerer, Hans; Pferschy, Ulrich (2003-03-01). "A 3/4-Approximation Algorithm for Multiple Subset Sum". Journal of Heuristics. 9 (2): 99–111. doi:10.1023/A:1022584312032. ISSN 1572-9397. S2CID 1120180. https://doi.org/10.1023/A:1022584312032 ↩
Nicosia, Gaia; Pacifici, Andrea; Pferschy, Ulrich (2015). "Brief Announcement: On the Fair Subset Sum Problem". In Hoefer, Martin (ed.). Algorithmic Game Theory. Lecture Notes in Computer Science. Vol. 9347. Berlin, Heidelberg: Springer. pp. 309–311. doi:10.1007/978-3-662-48433-3_28. ISBN 978-3-662-48433-3. 978-3-662-48433-3 ↩
Nicosia, Gaia; Pacifici, Andrea; Pferschy, Ulrich (2017-03-16). "Price of Fairness for allocating a bounded resource". European Journal of Operational Research. 257 (3): 933–943. arXiv:1508.05253. doi:10.1016/j.ejor.2016.08.013. ISSN 0377-2217. S2CID 14229329. https://www.sciencedirect.com/science/article/abs/pii/S0377221716306282 ↩
Chandra Chekuri and Sanjeev Khanna (2005). "A PTAS for the multiple knapsack problem". SIAM Journal on Computing. 35 (3): 713–728. CiteSeerX 10.1.1.226.3387. doi:10.1137/s0097539700382820. /wiki/CiteSeerX_(identifier) ↩