The calculations depend on the ability to break down every step of a task into the basic process level. The more detailed the analysis, the more accurate the model will be to predict human performance. The method for determining processes can be broken down into the following steps.
Once complete, the calculations can then be used to determine the probability of a user remembering an item that may have been encountered in the process. The following formula can be used to find the probability: P = e-K*t where K is the decay constant for the respective memory in question (working or long term) and t is the amount of time elapsed (with units corresponding to that of K). The probability could then be used to determine whether or not a user would be likely to recall an important piece of information they were presented with while doing an activity.
It is important to deduce beforehand whether the user would be able to repeat the vital information throughout time t, as this has a negative impact on the working memory if they cannot. For example, if a user is reading lines of text and is presented with an important phone number in that text, they may not be able to repeat the number if they have to continue to read. This would cause the user’s working memory’s decay time to be smaller, thus reducing their probability of recall.
K., Card, Stuart (1983). The psychology of human-computer interaction. Moran, Thomas P., Newell, Allen. Hillsdale, N.J.: L. Erlbaum Associates. ISBN 9780898592436. OCLC 9042220.{{cite book}}: CS1 maint: multiple names: authors list (link) 9780898592436 ↩