Here is a short list of incremental decision tree methods, organized by their (usually non-incremental) parent algorithms.
note: ID6NB (2009) is not incremental.
Very Fast Decision Trees learner reduces training time for large incremental data sets by subsampling the incoming data stream.
Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. (1984). Classification and regression trees. Belmont, CA: Wadsworth International. ISBN 978-1-351-46048-4. 978-1-351-46048-4
Morgan, J.N; Sondquist, J.A. (1963). "Problems in the analysis of survey data, and a proposal" (PDF). J. Amer. Statist. Assoc. 58 (302): 415–434. doi:10.1080/01621459.1963.10500855. http://cda.psych.uiuc.edu/statistical_learning_course/morgan_sonquist.pdf
Crawford, S.L. (1989). "Extensions to the CART algorithm". International Journal of Man-Machine Studies. 31 (2): 197–217. doi:10.1016/0020-7373(89)90027-8. https://dx.doi.org/10.1016/0020-7373%2889%2990027-8
Quinlan, J.R. (1986). "Induction of Decision Trees" (PDF). Machine Learning. 1 (1): 81–106. doi:10.1007/BF00116251. S2CID 13252401. https://link.springer.com/content/pdf/10.1007/BF00116251.pdf
Quinlan, J.R. (2014) [1993]. C4.5: Programs for machine learning. Elsevier. ISBN 978-1-55860-238-0. 978-1-55860-238-0
Hunt, E.B.; Marin, J.; Stone, P.J. (1966). Experiments in induction. Academic Press. ISBN 978-0-12-362350-8. 978-0-12-362350-8
Schlimmer, J.C.; Fisher, D. (1986). "A case study of incremental concept induction". AAAI'86: Proceedings of the Fifth National Conference on Artificial Intelligence. Morgan Kaufmann. pp. 496–501. https://www.researchgate.net/publication/221603307
Schlimmer, J.C.; Fisher, D. (1986). "A case study of incremental concept induction". AAAI'86: Proceedings of the Fifth National Conference on Artificial Intelligence. Morgan Kaufmann. pp. 496–501. https://www.researchgate.net/publication/221603307
Utgoff, P.E. (1988). "ID5: An incremental ID3" (PDF). Machine Learning Proceedings 1988 Proceedings of the Fifth International Conference on Machine Learning. Morgan Kaufmann. pp. 107–120. doi:10.1016/B978-0-934613-64-4.50017-7. ISBN 978-0-934613-64-4.
Publishers. 978-0-934613-64-4
Utgoff, P.E. (1989). "Incremental induction of decision trees" (PDF). Machine Learning. 4 (2): 161–186. doi:10.1023/A:1022699900025. S2CID 5293072. https://link.springer.com/content/pdf/10.1023/A:1022699900025.pdf
Kroon, M., Korzec, S., Adriani, P. (2007) ID6MDL: Post-Pruning Incremental Decision Trees.
Utgoff, P.E.; Berkman, N.C.; Clouse, J.A. (1997). "Decision tree induction based on efficient tree restructuring" (PDF). Machine Learning. 29: 5–44. doi:10.1023/A:1007413323501. S2CID 2743403. https://link.springer.com/content/pdf/10.1023/A:1007413323501.pdf
Appavu, S.; Rajaram, R. (2009). "Knowledge-based system for text classification using ID6NB algorithm]". Knowledge-Based Systems. 22 (1): 1–7. doi:10.1016/j.knosys.2008.04.006. https://www.sciencedirect.com/science/article/pii/S0950705108001081
Schlimmer, J.C.; Fisher, D. (1986). "A case study of incremental concept induction". AAAI'86: Proceedings of the Fifth National Conference on Artificial Intelligence. Morgan Kaufmann. pp. 496–501. https://www.researchgate.net/publication/221603307
Schlimmer, J.C.; Granger, Jr., R.H. (1986). "Incremental learning from noisy data". Machine Learning. 1 (3): 317–354. doi:10.1007/BF00116895. S2CID 33776987. https://doi.org/10.1007%2FBF00116895
Michalski, R.S.; Larson, J.B. (1978). Selection of most representative training examples and incremental generation of VL hypotheses: The underlying methodology and the description of the programs ESEL and AQ11 (PDF) (Technical report). University of Illinois, Department of Computer Science. hdl:1920/1544/78-03. UIUCDCS-R-78-867. http://digilib.gmu.edu/jspui/bitstream/handle/1920/1544/78-03.pdf
Michalski, R.S. (1973). "Discovering classification rules using variable-valued logic system VL1" (PDF). IJCAI'73: Proceedings of the Third International Joint Conference on Artificial Intelligence. Stanford, CA: Morgan Kaufmann. pp. 162–172. hdl:1920/1515/73-01. http://digilib.gmu.edu/jspui/bitstream/handle/1920/1515/73-01.pdf
Schlimmer, J.C.; Fisher, D. (1986). "A case study of incremental concept induction". AAAI'86: Proceedings of the Fifth National Conference on Artificial Intelligence. Morgan Kaufmann. pp. 496–501. https://www.researchgate.net/publication/221603307
Fisher, D.; Schlimmer, J. (1988). Models of Incremental Concept Learning: A coupled research proposal (Technical report). Vanderbilt University. CS-88-05. http://www.vuse.vanderbilt.edu/~dfisher/tech-reports/tr-88-05/proposal.html
Domingos, P.; Hulten, G. (2000). "Mining high-speed data streams" (PDF). Proceedings KDD Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining. ACM Press. pp. 71–80. doi:10.1145/347090.347107. ISBN 1-58113-233-6. S2CID 8810610. 1-58113-233-6
Hulten, G.; Spencer, L.; Domingos, P. (2001). "Mining time-changing data streams" (PDF). Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining. ACM Press. pp. 97–106. doi:10.1145/502512.502529. ISBN 978-1-58113-391-2. S2CID 6416602. 978-1-58113-391-2
Gama, J.; Fernandes, R.; Rocha, R. (2006). "Decision trees for mining data streams". Intelligent Data Analysis. 10: 23–45. doi:10.3233/IDA-2006-10103. https://content.iospress.com/articles/intelligent-data-analysis/ida00234
Last, M. (2002). "Online classification of nonstationary data streams" (PDF). Intell. Data Anal. 6 (2): 129–147. doi:10.3233/IDA-2002-6203. https://www.academia.edu/download/46518868/Change2.pdf
Cohen, L.; Avrahami, G.; Last, M.; Kandel, A. (2008). "Info-fuzzy algorithms for mining dynamic data streams" (PDF). Applied Soft Computing. 8 (4): 1283–94. doi:10.1016/j.asoc.2007.11.003. http://www.ise.bgu.ac.il/faculty/mlast/papers/Paper_RTDM_ASOC_SI_Final.pdf
Maimon, O.; Last, M. (2000). The info-fuzzy network (IFN) methodology. Knowledge Discovery and Data Mining. Kluwer. doi:10.1007/978-1-4757-3296-2. ISBN 978-1-4757-3296-2. S2CID 41520652. 978-1-4757-3296-2