The incomplete Bessel functions are defined as the same delay differential equations of the complete-type Bessel functions:
And the following suitable extension forms of delay differential equations from that of the complete-type Bessel functions:
Where the new parameter w {\displaystyle w} defines the integral bound of the upper-incomplete form and lower-incomplete form of the modified Bessel function of the second kind:1
K v ( z , w ) {\displaystyle K_{v}(z,w)} satisfies the inhomogeneous Bessel's differential equation
Both J v ( z , w ) {\displaystyle J_{v}(z,w)} , Y v ( z , w ) {\displaystyle Y_{v}(z,w)} , H v ( 1 ) ( z , w ) {\displaystyle H_{v}^{(1)}(z,w)} and H v ( 2 ) ( z , w ) {\displaystyle H_{v}^{(2)}(z,w)} satisfy the partial differential equation
Both I v ( z , w ) {\displaystyle I_{v}(z,w)} and K v ( z , w ) {\displaystyle K_{v}(z,w)} satisfy the partial differential equation
Base on the preliminary definitions above, one would derive directly the following integral forms of J v ( z , w ) {\displaystyle J_{v}(z,w)} , Y v ( z , w ) {\displaystyle Y_{v}(z,w)} :
With the Mehler–Sonine integral expressions of J v ( z ) = 2 π ∫ 0 ∞ sin ( z cosh t − v π 2 ) cosh v t d t {\displaystyle J_{v}(z)={\dfrac {2}{\pi }}\int _{0}^{\infty }\sin \left(z\cosh t-{\dfrac {v\pi }{2}}\right)\cosh vt~dt} and Y v ( z ) = − 2 π ∫ 0 ∞ cos ( z cosh t − v π 2 ) cosh v t d t {\displaystyle Y_{v}(z)=-{\dfrac {2}{\pi }}\int _{0}^{\infty }\cos \left(z\cosh t-{\dfrac {v\pi }{2}}\right)\cosh vt~dt} mentioned in Digital Library of Mathematical Functions,2
we can further simplify to J v ( z , w ) = 2 π ∫ w ∞ sin ( z cosh t − v π 2 ) cosh v t d t {\displaystyle J_{v}(z,w)={\dfrac {2}{\pi }}\int _{w}^{\infty }\sin \left(z\cosh t-{\dfrac {v\pi }{2}}\right)\cosh vt~dt} and Y v ( z , w ) = − 2 π ∫ w ∞ cos ( z cosh t − v π 2 ) cosh v t d t {\displaystyle Y_{v}(z,w)=-{\dfrac {2}{\pi }}\int _{w}^{\infty }\cos \left(z\cosh t-{\dfrac {v\pi }{2}}\right)\cosh vt~dt} , but the issue is not quite good since the convergence range will reduce greatly to | v | < 1 {\displaystyle |v|<1} .
Jones, D. S. (February 2007). "Incomplete Bessel functions. I". Proceedings of the Edinburgh Mathematical Society. 50 (1): 173–183. doi:10.1017/S0013091505000490. https://doi.org/10.1017%2FS0013091505000490 ↩
Paris, R. B. (2010), "Bessel Functions", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248. 978-0-521-19225-5 ↩