For a given iterated function f : R → R {\displaystyle f:\mathbb {R} \rightarrow \mathbb {R} } , the plot consists of a diagonal ( x = y {\displaystyle x=y} ) line and a curve representing y = f ( x ) {\displaystyle y=f(x)} . To plot the behaviour of a value x 0 {\displaystyle x_{0}} , apply the following steps.
On the Lémeray diagram, a stable fixed point corresponds to the segment of the staircase with progressively decreasing stair lengths or to an inward spiral, while an unstable fixed point is the segment of the staircase with growing stairs or an outward spiral. It follows from the definition of a fixed point that the staircases converge whereas spirals center at a point where the diagonal y = x {\displaystyle y=x} line crosses the function graph. A period-2 orbit is represented by a rectangle, while greater period cycles produce further, more complex closed loops. A chaotic orbit would show a "filled-out" area, indicating an infinite number of non-repeating values.3
Lémeray, E.-M. (1897). "Sur la convergence des substitutions uniformes" (PDF). Nouvelles annales de mathématiques, 3e série. 16: 306–319. http://www.numdam.org/item/NAM_1898_3_17__75_1.pdf ↩
Stoop, Ruedi; Steeb, Willi-Hans (2006). Berechenbares Chaos in dynamischen Systemen [Computable Chaos in dynamic systems] (in German). Birkhäuser Basel. p. 8. doi:10.1007/3-7643-7551-5. ISBN 978-3-7643-7551-5. 978-3-7643-7551-5 ↩