The Burr (Type XII) distribution has probability density function:34
The λ {\displaystyle \lambda } parameter scales the underlying variate and is a positive real.
The cumulative distribution function is:
It is most commonly used to model household income, see for example: Household income in the U.S. and compare to magenta graph at right.
Given a random variable U {\displaystyle U} drawn from the uniform distribution in the interval ( 0 , 1 ) {\displaystyle \left(0,1\right)} , the random variable
has a Burr Type XII distribution with parameters c {\displaystyle c} , k {\displaystyle k} and λ {\displaystyle \lambda } . This follows from the inverse cumulative distribution function given above.
Burr, I. W. (1942). "Cumulative frequency functions". Annals of Mathematical Statistics. 13 (2): 215–232. doi:10.1214/aoms/1177731607. JSTOR 2235756. https://doi.org/10.1214%2Faoms%2F1177731607 ↩
Singh, S.; Maddala, G. (1976). "A Function for the Size Distribution of Incomes". Econometrica. 44 (5): 963–970. doi:10.2307/1911538. JSTOR 1911538. /wiki/Econometrica ↩
Maddala, G. S. (1996) [1983]. Limited-Dependent and Qualitative Variables in Econometrics. Cambridge University Press. ISBN 0-521-33825-5. 0-521-33825-5 ↩
Tadikamalla, Pandu R. (1980), "A Look at the Burr and Related Distributions", International Statistical Review, 48 (3): 337–344, doi:10.2307/1402945, JSTOR 1402945 /wiki/Doi_(identifier) ↩
C. Kleiber and S. Kotz (2003). Statistical Size Distributions in Economics and Actuarial Sciences. New York: Wiley. See Sections 7.3 "Champernowne Distribution" and 6.4.1 "Fisk Distribution." ↩
Champernowne, D. G. (1952). "The graduation of income distributions". Econometrica. 20 (4): 591–614. doi:10.2307/1907644. JSTOR 1907644. /wiki/Econometrica ↩
See Kleiber and Kotz (2003), Table 2.4, p. 51, "The Burr Distributions." ↩