Lo (1991) advocates adjusting the standard deviation S {\displaystyle S} for the expected increase in range R {\displaystyle R} resulting from short-range autocorrelation in the time series.7 This involves replacing S {\displaystyle S} by S ^ {\displaystyle {\hat {S}}} , which is the square root of
S ^ 2 = S 2 + 2 ∑ j = 1 q ( 1 − j q + 1 ) C ( j ) , {\displaystyle {\hat {S}}^{2}=S^{2}+2\sum _{j=1}^{q}\left(1-{\frac {j}{q+1}}\right)C(j),}
where q {\displaystyle q} is some maximum lag over which short-range autocorrelation might be substantial and C ( j ) {\displaystyle C(j)} is the sample autocovariance at lag j {\displaystyle j} . Using this adjusted rescaled range, he concludes that stock market return time series show no evidence of long-range memory.
Hurst, H. E. (1951). "Long term storage capacity of reservoirs". Trans. Am. Soc. Eng. 116: 770–799. ↩
Peters, E. E. (1991). Chaos and order in the capital markets. John Wiley and Sons. ISBN 978-0-471-53372-6. 978-0-471-53372-6 ↩
Mandelbrot, B. (1968). "Fractional Brownian motions, fractional noises and applications". SIAM Review. 10 (4): 422–437. Bibcode:1968SIAMR..10..422M. doi:10.1137/1010093. /wiki/Bibcode_(identifier) ↩
Kamenshchikov, S. (2014). "Transport Catastrophe Analysis as an Alternative to a Monofractal Description: Theory and Application to Financial Crisis Time Series". Journal of Chaos. 2014: 1–8. doi:10.1155/2014/346743. https://doi.org/10.1155%2F2014%2F346743 ↩
Lo, A. (1991). "Long-Term Memory in Stock Market Prices" (PDF). Econometrica. 59 (5): 1279–1313. doi:10.2307/2938368. hdl:1721.1/2245. JSTOR 2938368. http://dspace.mit.edu/bitstream/1721.1/2245/1/SWP-3014-20126283.pdf ↩
Bo Qian; Khaled Rasheed (2004). HURST EXPONENT AND FINANCIAL MARKET PREDICTABILITY. IASTED conference on "Financial Engineering and Applications"(FEA 2004). pp. 203–209. CiteSeerX 10.1.1.137.207. /wiki/CiteSeerX_(identifier) ↩