Define the following angles: γ = ∠ P 1 A P 2 , δ = ∠ P 1 B P 2 , ϕ = ∠ P 2 A B , ψ = ∠ P 1 B A . {\displaystyle {\begin{alignedat}{5}\gamma &=\angle P_{1}AP_{2},&\quad \delta &=\angle P_{1}BP_{2},\\[4pt]\phi &=\angle P_{2}AB,&\quad \psi &=\angle P_{1}BA.\end{alignedat}}} As a first step we will solve for φ and ψ. The sum of these two unknown angles is equal to the sum of β1 and β2, yielding the equation
ϕ + ψ = β 1 + β 2 . {\displaystyle \phi +\psi =\beta _{1}+\beta _{2}.}
A second equation can be found more laboriously, as follows. The law of sines yields
A B ¯ P 2 B ¯ = sin α 2 sin ϕ , P 2 B ¯ P 1 P 2 ¯ = sin β 1 sin δ . {\displaystyle {\frac {\overline {AB}}{\overline {P_{2}B}}}={\frac {\sin \alpha _{2}}{\sin \phi }},\qquad {\frac {\overline {P_{2}B}}{\overline {P_{1}P_{2}}}}={\frac {\sin \beta _{1}}{\sin \delta }}.}
Combining these, we get
A B ¯ P 1 P 2 ¯ = sin α 2 sin β 1 sin ϕ sin δ . {\displaystyle {\frac {\overline {AB}}{\overline {P_{1}P_{2}}}}={\frac {\sin \alpha _{2}\sin \beta _{1}}{\sin \phi \sin \delta }}.}
Entirely analogous reasoning on the other side yields
A B ¯ P 1 P 2 ¯ = sin α 1 sin β 2 sin ψ sin γ . {\displaystyle {\frac {\overline {AB}}{\overline {P_{1}P_{2}}}}={\frac {\sin \alpha _{1}\sin \beta _{2}}{\sin \psi \sin \gamma }}.}
Setting these two equal gives
sin ϕ sin ψ = sin γ sin α 2 sin β 1 sin δ sin α 1 sin β 2 = k . {\displaystyle {\frac {\sin \phi }{\sin \psi }}={\frac {\sin \gamma \sin \alpha _{2}\sin \beta _{1}}{\sin \delta \sin \alpha _{1}\sin \beta _{2}}}=k.}
Using a known trigonometric identity this ratio of sines can be expressed as the tangent of an angle difference:
Where k = sin ϕ sin ψ . {\displaystyle k={\frac {\sin \phi }{\sin \psi }}.}
This is the second equation we need. Once we solve the two equations for the two unknowns φ, ψ, we can use either of the two expressions above for A B ¯ P 1 P 2 ¯ {\displaystyle {\tfrac {\overline {AB}}{\overline {P_{1}P_{2}}}}} to find P 1 P 2 ¯ {\displaystyle {\overline {P_{1}P_{2}}}} since AB is known. We can then find all the other segments using the law of sines.1
We are given four angles (α1, β1, α2, β2) and the distance AB. The calculation proceeds as follows:
Calculate P 1 P 2 ¯ = A B ¯ sin ϕ sin δ sin α 2 sin β 1 {\displaystyle {\overline {P_{1}P_{2}}}={\overline {AB}}\ {\frac {\sin \phi \sin \delta }{\sin \alpha _{2}\sin \beta _{1}}}} or equivalently P 1 P 2 ¯ = A B ¯ sin ψ sin γ sin α 1 sin β 2 . {\displaystyle {\overline {P_{1}P_{2}}}={\overline {AB}}\ {\frac {\sin \psi \sin \gamma }{\sin \alpha _{1}\sin \beta _{2}}}.} If one of these fractions has a denominator close to zero, use the other one.
Udo Hebisch: Ebene und Sphaerische Trigonometrie, Kapitel 1, Beispiel 4 (2005, 2006)[1] Archived 2016-02-22 at the Wayback Machine http://www.mathe.tu-freiberg.de/~hebisch/skripte/sphaerik/strigo.pdf ↩