When the outcome of interest is binary, the most general tool for the analysis of matched data is conditional logistic regression as it handles strata of arbitrary size and continuous or binary treatments (predictors) and can control for covariates. In particular cases, simpler tests like paired difference test, McNemar test and Cochran–Mantel–Haenszel test are available.
When the outcome of interest is continuous, estimation of the average treatment effect is performed.
Matching can also be used to "pre-process" a sample before analysis via another technique, such as regression analysis.12
Overmatching, or post-treatment bias, is matching for an apparent mediator that actually is a result of the exposure.13 If the mediator itself is stratified, an obscured relation of the exposure to the disease would highly be likely to be induced.14 Overmatching thus causes statistical bias.15
For example, matching the control group by gestation length and/or the number of multiple births when estimating perinatal mortality and birthweight after in vitro fertilization (IVF) is overmatching, since IVF itself increases the risk of premature birth and multiple birth.16
It may be regarded as a sampling bias in decreasing the external validity of a study, because the controls become more similar to the cases in regard to exposure than the general population.
Rubin, Donald B. (1973). "Matching to Remove Bias in Observational Studies". Biometrics. 29 (1): 159–183. doi:10.2307/2529684. JSTOR 2529684. /wiki/Doi_(identifier) ↩
Anderson, Dallas W.; Kish, Leslie; Cornell, Richard G. (1980). "On Stratification, Grouping and Matching". Scandinavian Journal of Statistics. 7 (2): 61–66. JSTOR 4615774. /wiki/JSTOR_(identifier) ↩
Kupper, Lawrence L.; Karon, John M.; Kleinbaum, David G.; Morgenstern, Hal; Lewis, Donald K. (1981). "Matching in Epidemiologic Studies: Validity and Efficiency Considerations". Biometrics. 37 (2): 271–291. CiteSeerX 10.1.1.154.1197. doi:10.2307/2530417. JSTOR 2530417. PMID 7272415. /wiki/CiteSeerX_(identifier) ↩
Rosenbaum, Paul R.; Rubin, Donald B. (1983). "The Central Role of the Propensity Score in Observational Studies for Causal Effects". Biometrika. 70 (1): 41–55. doi:10.1093/biomet/70.1.41. https://doi.org/10.1093%2Fbiomet%2F70.1.41 ↩
King, Gary; Nielsen, Richard (October 2019). "Why Propensity Scores Should Not Be Used for Matching". Political Analysis. 27 (4): 435–454. doi:10.1017/pan.2019.11. hdl:1721.1/128459. ISSN 1047-1987. https://doi.org/10.1017%2Fpan.2019.11 ↩
Iacus, Stefano M.; King, Gary; Porro, Giuseppe (2011). "Multivariate Matching Methods That Are Monotonic Imbalance Bounding". Journal of the American Statistical Association. 106 (493): 345–361. doi:10.1198/jasa.2011.tm09599. hdl:2434/151476. ISSN 0162-1459. S2CID 14790456. http://www.tandfonline.com/doi/abs/10.1198/jasa.2011.tm09599 ↩
LaLonde, Robert J. (1986). "Evaluating the Econometric Evaluations of Training Programs with Experimental Data". American Economic Review. 76 (4): 604–620. JSTOR 1806062. /wiki/American_Economic_Review ↩
Dehejia, R. H.; Wahba, S. (1999). "Causal Effects in Nonexperimental Studies: Reevaluating the Evaluation of Training Programs" (PDF). Journal of the American Statistical Association. 94 (448): 1053–1062. doi:10.1080/01621459.1999.10473858. http://www.nber.org/papers/w6586.pdf ↩
Arceneaux, Kevin; Gerber, Alan S.; Green, Donald P. (2006). "Comparing Experimental and Matching Methods Using a Large-Scale Field Experiment on Voter Mobilization". Political Analysis. 14 (1): 37–62. doi:10.1093/pan/mpj001. /wiki/Doi_(identifier) ↩
Arceneaux, Kevin; Gerber, Alan S.; Green, Donald P. (2010). "A Cautionary Note on the Use of Matching to Estimate Causal Effects: An Empirical Example Comparing Matching Estimates to an Experimental Benchmark". Sociological Methods & Research. 39 (2): 256–282. doi:10.1177/0049124110378098. S2CID 37012563. /wiki/Doi_(identifier) ↩
Ho, Daniel E.; Imai, Kosuke; King, Gary; Stuart, Elizabeth A. (2007). "Matching as Nonparametric Preprocessing for Reducing Model Dependence in Parametric Causal Inference". Political Analysis. 15 (3): 199–236. doi:10.1093/pan/mpl013. /wiki/Elizabeth_A._Stuart ↩
King, Gary; Zeng, Langche (2007). "Detecting Model Dependence in Statistical Inference: A Response". International Studies Quarterly. 51 (1): 231–241. doi:10.1111/j.1468-2478.2007.00449.x. ISSN 0020-8833. JSTOR 4621711. S2CID 12669035. https://www.jstor.org/stable/4621711 ↩
Marsh, J. L.; Hutton, J. L.; Binks, K. (2002). "Removal of radiation dose response effects: an example of over-matching". British Medical Journal. 325 (7359): 327–330. doi:10.1136/bmj.325.7359.327. PMC 1123834. PMID 12169512. /wiki/Jane_Hutton ↩
Gissler, M.; Hemminki, E. (1996). "The danger of overmatching in studies of the perinatal mortality and birthweight of infants born after assisted conception". Eur J Obstet Gynecol Reprod Biol. 69 (2): 73–75. doi:10.1016/0301-2115(95)02517-0. PMID 8902436. /wiki/Doi_(identifier) ↩