Defining and calibrating what magnitude 0.0 means is difficult, and different types of measurements which detect different kinds of light (possibly by using filters) have different zero points. Pogson's original 1856 paper defined magnitude 6.0 to be the faintest star the unaided eye can see, but the true limit for faintest possible visible star varies depending on the atmosphere and how high a star is in the sky. The Harvard Photometry used an average of 100 stars close to Polaris to define magnitude 5.0. Later, the Johnson UVB photometric system defined multiple types of photometric measurements with different filters, where magnitude 0.0 for each filter is defined to be the average of six stars with the same spectral type as Vega. This was done so the color index of these stars would be 0. Although this system is often called "Vega normalized", Vega is slightly dimmer than the six-star average used to define magnitude 0.0, meaning Vega's magnitude is normalized to 0.03 by definition.
Limiting Magnitudes for Visual Observation at High MagnificationWith the modern magnitude systems, brightness is described using Pogson's ratio. In practice, magnitude numbers rarely go above 30 before stars become too faint to detect. While Vega is close to magnitude 0, there are four brighter stars in the night sky at visible wavelengths (and more at infrared wavelengths) as well as the bright planets Venus, Mars, and Jupiter, and since brighter means smaller magnitude, these must be described by negative magnitudes. For example, Sirius, the brightest star of the celestial sphere, has a magnitude of −1.4 in the visible. Negative magnitudes for other very bright astronomical objects can be found in the table below.
Astronomers have developed other photometric zero point systems as alternatives to Vega normalized systems. The most widely used is the AB magnitude system, in which photometric zero points are based on a hypothetical reference spectrum having constant flux per unit frequency interval, rather than using a stellar spectrum or blackbody curve as the reference. The AB magnitude zero point is defined such that an object's AB and Vega-based magnitudes will be approximately equal in the V filter band. However, the AB magnitude system is defined assuming an idealized detector measuring only one wavelength of light, while real detectors accept energy from a range of wavelengths.
Precision measurement of magnitude (photometry) requires calibration of the photographic or (usually) electronic detection apparatus. This generally involves contemporaneous observation, under identical conditions, of standard stars whose magnitude using that spectral filter is accurately known. Moreover, as the amount of light actually received by a telescope is reduced due to transmission through the Earth's atmosphere, the airmasses of the target and calibration stars must be taken into account. Typically one would observe a few different stars of known magnitude which are sufficiently similar. Calibrator stars close in the sky to the target are favoured (to avoid large differences in the atmospheric paths). If those stars have somewhat different zenith angles (altitudes) then a correction factor as a function of airmass can be derived and applied to the airmass at the target's position. Such calibration obtains the brightness as would be observed from above the atmosphere, where apparent magnitude is defined.
The apparent magnitude scale in astronomy reflects the received power of stars and not their amplitude. Newcomers should consider using the relative brightness measure in astrophotography to adjust exposure times between stars. Apparent magnitude also integrates over the entire object, regardless of its focus, and this needs to be taken into account when scaling exposure times for objects with significant apparent size, like the Sun, Moon and planets. For example, directly scaling the exposure time from the Moon to the Sun works because they are approximately the same size in the sky. However, scaling the exposure from the Moon to Saturn would result in an overexposure if the image of Saturn takes up a smaller area on your sensor than the Moon did (at the same magnification, or more generally, f/#).
The dimmer an object appears, the higher the numerical value given to its magnitude, with a difference of 5 magnitudes corresponding to a brightness factor of exactly 100. Therefore, the magnitude m, in the spectral band x, would be given by
m
x
=
−
5
log
100
(
F
x
F
x
,
0
)
,
{\displaystyle m_{x}=-5\log _{100}\left({\frac {F_{x}}{F_{x,0}}}\right),}
which is more commonly expressed in terms of common (base-10) logarithms as
m
x
=
−
2.5
log
10
(
F
x
F
x
,
0
)
,
{\displaystyle m_{x}=-2.5\log _{10}\left({\frac {F_{x}}{F_{x,0}}}\right),}
where Fx is the observed irradiance using spectral filter x, and Fx,0 is the reference flux (zero-point) for that photometric filter. Since an increase of 5 magnitudes corresponds to a decrease in brightness by a factor of exactly 100, each magnitude increase implies a decrease in brightness by the factor
100
5
≈
2.512
{\displaystyle {\sqrt[{5}]{100}}\approx 2.512}
(Pogson's ratio). Inverting the above formula, a magnitude difference m1 − m2 = Δm implies a brightness factor of
F
2
F
1
=
100
Δ
m
5
=
10
0.4
Δ
m
≈
2.512
Δ
m
.
{\displaystyle {\frac {F_{2}}{F_{1}}}=100^{\frac {\Delta m}{5}}=10^{0.4\Delta m}\approx 2.512^{\Delta m}.}
The apparent magnitude of the Sun is −26.832 (brighter), and the mean magnitude of the full moon is −12.74 (dimmer).
Difference in magnitude:
x
=
m
1
−
m
2
=
(
−
12.74
)
−
(
−
26.832
)
=
14.09.
{\displaystyle x=m_{1}-m_{2}=(-12.74)-(-26.832)=14.09.}
Brightness factor:
v
b
=
10
0.4
x
=
10
0.4
×
14.09
≈
432
513.
{\displaystyle v_{b}=10^{0.4x}=10^{0.4\times 14.09}\approx 432\,513.}
The Sun appears to be approximately 400000 times as bright as the full Moon.
Solving for
m
f
{\displaystyle m_{f}}
yields
m
f
=
−
2.5
log
10
(
10
−
m
1
×
0.4
+
10
−
m
2
×
0.4
)
,
{\displaystyle m_{f}=-2.5\log _{10}\left(10^{-m_{1}\times 0.4}+10^{-m_{2}\times 0.4}\right),}
where mf is the resulting magnitude after adding the brightnesses referred to by m1 and m2.
While magnitude generally refers to a measurement in a particular filter band corresponding to some range of wavelengths, the apparent or absolute bolometric magnitude (mbol) is a measure of an object's apparent or absolute brightness integrated over all wavelengths of the electromagnetic spectrum (also known as the object's irradiance or power, respectively). The zero point of the apparent bolometric magnitude scale is based on the definition that an apparent bolometric magnitude of 0 mag is equivalent to a received irradiance of 2.518×10−8 watts per square metre (W·m−2).
While apparent magnitude is a measure of the brightness of an object as seen by a particular observer, absolute magnitude is a measure of the intrinsic brightness of an object. Flux decreases with distance according to an inverse-square law, so the apparent magnitude of a star depends on both its absolute brightness and its distance (and any extinction). For example, a star at one distance will have the same apparent magnitude as a star four times as bright at twice that distance. In contrast, the intrinsic brightness of an astronomical object, does not depend on the distance of the observer or any extinction.
The absolute magnitude M, of a star or astronomical object is defined as the apparent magnitude it would have as seen from a distance of 10 parsecs (33 ly). The absolute magnitude of the Sun is 4.83 in the V band (visual), 4.68 in the Gaia satellite's G band (green) and 5.48 in the B band (blue).
In the case of a planet or asteroid, the absolute magnitude H rather means the apparent magnitude it would have if it were 1 astronomical unit (150,000,000 km) from both the observer and the Sun, and fully illuminated at maximum opposition (a configuration that is only theoretically achievable, with the observer situated on the surface of the Sun).
The magnitude scale is a reverse logarithmic scale. A common misconception is that the logarithmic nature of the scale is because the human eye itself has a logarithmic response. In Pogson's time this was thought to be true (see Weber–Fechner law), but it is now believed that the response is a power law (see Stevens' power law).
Measures of magnitude need cautious treatment and it is extremely important to measure like with like. On early 20th century and older orthochromatic (blue-sensitive) photographic film, the relative brightnesses of the blue supergiant Rigel and the red supergiant Betelgeuse irregular variable star (at maximum) are reversed compared to what human eyes perceive, because this archaic film is more sensitive to blue light than it is to red light. Magnitudes obtained from this method are known as photographic magnitudes, and are now considered obsolete.
For planets and other Solar System bodies, the apparent magnitude is derived from its phase curve and the distances to the Sun and observer.
Some of the listed magnitudes are approximate. Telescope sensitivity depends on observing time, optical bandpass, and interfering light from scattering and airglow.
Apparent visual magnitudes of celestial objects
Toomer, G. J. (1984). Ptolemy's Almagest. New York: Springer-Verlag. p. 16. ISBN 0-387-91220-7. 0-387-91220-7
Curtis, Heber Doust (1903) [1901-03-27]. "On the Limits of Unaided Vision". Lick Observatory Bulletin. 2 (38). University of California: 67–69. Bibcode:1903LicOB...2...67C. doi:10.5479/ADS/bib/1903LicOB.2.67C. /wiki/Lick_Observatory
Matthew, Templeton (21 October 2011). "Magnitudes: Measuring the Brightness of Stars". American Association of Variable Stars (AAVSO). Archived from the original on 18 May 2019. Retrieved 19 May 2019. https://www.aavso.org/magnitude
Crumey, A. (October 2006). "Human Contrast Threshold and Astronomical Visibility". Monthly Notices of the Royal Astronomical Society. 442 (3): 2600–2619. arXiv:1405.4209. Bibcode:2014MNRAS.442.2600C. doi:10.1093/mnras/stu992. https://doi.org/10.1093%2Fmnras%2Fstu992
"Vmag<6.5". SIMBAD Astronomical Database. Archived from the original on 22 February 2015. Retrieved 25 June 2010. http://simbad.u-strasbg.fr/simbad/sim-sam?Criteria=Vmag%3C6.5
"Magnitude". National Solar Observatory—Sacramento Peak. Archived from the original on 6 February 2008. Retrieved 23 August 2006. https://web.archive.org/web/20080206074842/http://www.nso.edu/PR/answerbook/magnitude.html
Bright Star Catalogue /wiki/Bright_Star_Catalogue
Hoffmann, S., Hipparchs Himmelsglobus, Springer, Wiesbaden/ New York, 2017
Pogson, N. (1856). "Magnitudes of Thirty-six of the Minor Planets for the first day of each month of the year 1857". MNRAS. 17: 12. Bibcode:1856MNRAS..17...12P. doi:10.1093/mnras/17.1.12. /wiki/Norman_Robert_Pogson
Hearnshaw, John B. (1996). The measurement of starlight: two centuries of astronomical photometry (1. publ ed.). Cambridge: Cambridge Univ. Press. ISBN 978-0-521-40393-1. 978-0-521-40393-1
Pogson, N. (14 November 1856). "Magnitudes of Thirty-six of the Minor Planets for the First Day of each Month of the Year 1857". Monthly Notices of the Royal Astronomical Society. 17 (1): 12–15. Bibcode:1856MNRAS..17...12P. doi:10.1093/mnras/17.1.12. ISSN 0035-8711. https://doi.org/10.1093%2Fmnras%2F17.1.12
Hearnshaw, J. B. (1996). The measurement of starlight: two centuries of astronomical photometry. Cambridge [England] ; New York, NY, USA: Cambridge University Press. ISBN 978-0-521-40393-1. 978-0-521-40393-1
Johnson, H. L.; Morgan, W. W. (May 1953). "Fundamental stellar photometry for standards of spectral type on the revised system of the Yerkes spectral atlas". The Astrophysical Journal. 117: 313. Bibcode:1953ApJ...117..313J. doi:10.1086/145697. ISSN 0004-637X. http://adsabs.harvard.edu/doi/10.1086/145697
North, Gerald; James, Nick (2014). Observing Variable Stars, Novae and Supernovae. Cambridge University Press. p. 24. ISBN 978-1-107-63612-5. 978-1-107-63612-5
Oke, J. B.; Gunn, J. E. (15 March 1983). "Secondary standard stars for absolute spectrophotometry". The Astrophysical Journal. 266: 713–717. Bibcode:1983ApJ...266..713O. doi:10.1086/160817. /wiki/Bibcode_(identifier)
IAU Inter-Division A-G Working Group on Nominal Units for Stellar & Planetary Astronomy (13 August 2015). "IAU 2015 Resolution B2 on Recommended Zero Points for the Absolute and Apparent Bolometric Magnitude Scales" (PDF). Resolutions Adopted at the General Assemblies. arXiv:1510.06262. Bibcode:2015arXiv151006262M. Archived (PDF) from the original on 28 January 2016. Retrieved 19 May 2019. https://www.iau.org/static/resolutions/IAU2015_English.pdf
Williams, David R. (2 February 2010). "Moon Fact Sheet". NASA (National Space Science Data Center). Archived from the original on 23 March 2010. Retrieved 9 April 2010. https://nssdc.gsfc.nasa.gov/planetary/factsheet/moonfact.html
"Magnitude Arithmetic". Weekly Topic. Caglow. Archived from the original on 1 February 2012. Retrieved 30 January 2012. http://www.caglow.com/info/wtopic/mag-arith
IAU Inter-Division A-G Working Group on Nominal Units for Stellar & Planetary Astronomy (13 August 2015). "IAU 2015 Resolution B2 on Recommended Zero Points for the Absolute and Apparent Bolometric Magnitude Scales" (PDF). Resolutions Adopted at the General Assemblies. arXiv:1510.06262. Bibcode:2015arXiv151006262M. Archived (PDF) from the original on 28 January 2016. Retrieved 19 May 2019. https://www.iau.org/static/resolutions/IAU2015_English.pdf
"Lecture 4: Page 3, Properties of the Stars". homepages.uc.edu. Retrieved 5 December 2024. https://homepages.uc.edu/~hansonmm/ASTRO/LECTURENOTES/W03/Lec6/Page3.html
Evans, Aaron. "Some Useful Astronomical Definitions" (PDF). Stony Brook Astronomy Program. Archived (PDF) from the original on 20 July 2011. Retrieved 12 July 2009. http://www.astro.sunysb.edu/aevans/PHY523/classnotes523/useful-definitions-pp.pdf
Čotar, Klemen; Zwitter, Tomaž; et al. (21 May 2019). "The GALAH survey: unresolved triple Sun-like stars discovered by the Gaia mission". Monthly Notices of the Royal Astronomical Society. 487 (2). Oxford University Press (OUP): 2474–2490. arXiv:1904.04841. doi:10.1093/mnras/stz1397. ISSN 0035-8711. https://doi.org/10.1093%2Fmnras%2Fstz1397
Bessell, Michael S. (September 2005). "Standard Photometric Systems" (PDF). Annual Review of Astronomy and Astrophysics. 43 (1): 293–336. Bibcode:2005ARA&A..43..293B. doi:10.1146/annurev.astro.41.082801.100251. ISSN 0066-4146. Archived (PDF) from the original on 9 October 2022. http://www.mso.anu.edu.au/~bessell/araapaper.pdf
Luciuk, M. "Astronomical Magnitudes" (PDF). p. 8. Retrieved 11 January 2019. http://www.asterism.org/tutorials/tut35%20Magnitudes.pdf
Huchra, John. "Astronomical Magnitude Systems". Harvard-Smithsonian Center for Astrophysics. Archived from the original on 21 July 2018. Retrieved 18 July 2017. https://www.cfa.harvard.edu/~dfabricant/huchra/ay145/mags.html
Schulman, E.; Cox, C. V. (1997). "Misconceptions About Astronomical Magnitudes". American Journal of Physics. 65 (10): 1003. Bibcode:1997AmJPh..65.1003S. doi:10.1119/1.18714. /wiki/Eric_Schulman
"Magnitude | Brightness, Apparent Magnitude & Absolute Magnitude | Britannica". www.britannica.com. Retrieved 19 October 2023. https://www.britannica.com/science/magnitude-astronomy
"Introduction to active galaxies: View as single page". www.open.edu. Retrieved 19 October 2023. https://www.open.edu/openlearn/science-maths-technology/introduction-active-galaxies/content-section-5.4/?printable=1
Pickering, Edward C. (1910). "1910HarCi.160....1P Page 1". Harvard College Observatory Circular. 160: 1. Bibcode:1910HarCi.160....1P. Retrieved 19 October 2023. https://adsabs.harvard.edu/full/1910HarCi.160....1P
Umeh, Obinna; Clarkson, Chris; Maartens, Roy (2014). "Nonlinear relativistic corrections to cosmological distances, redshift and gravitational lensing magnification: II. Derivation". Classical and Quantum Gravity. 31 (20): 205001. arXiv:1402.1933. Bibcode:2014CQGra..31t5001U. doi:10.1088/0264-9381/31/20/205001. S2CID 54527784. /wiki/ArXiv_(identifier)
Hogg, David W.; Baldry, Ivan K.; Blanton, Michael R.; Eisenstein, Daniel J. (2002). "The K correction". arXiv:astro-ph/0210394. /wiki/ArXiv_(identifier)
Wing, R. F. (1967). "1967lts..conf..205W Page 205". Late-Type Stars: 205. Bibcode:1967lts..conf..205W. Retrieved 19 October 2023. https://adsabs.harvard.edu/full/1967lts..conf..205W
IAU Inter-Division A-G Working Group on Nominal Units for Stellar & Planetary Astronomy (13 August 2015). "IAU 2015 Resolution B2 on Recommended Zero Points for the Absolute and Apparent Bolometric Magnitude Scales" (PDF). Resolutions Adopted at the General Assemblies. arXiv:1510.06262. Bibcode:2015arXiv151006262M. Archived (PDF) from the original on 28 January 2016. Retrieved 19 May 2019. https://www.iau.org/static/resolutions/IAU2015_English.pdf
Agrawal, Dulli Chandra (30 March 2016). "Apparent magnitude of earthshine: a simple calculation". European Journal of Physics. 37 (3). IOP Publishing: 035601. Bibcode:2016EJPh...37c5601A. doi:10.1088/0143-0807/37/3/035601. ISSN 0143-0807. S2CID 124231299. /wiki/Bibcode_(identifier)
Polakis, Tom (10 September 1997). "Radiometry and photometry in astronomy". Home page of Paul Schlyter. Retrieved 25 April 2024. https://stjarnhimlen.se/comp/radfaq.html#11
Dufay, Jean (17 October 2012). Introduction to Astrophysics: The Stars. Courier Corporation. p. 3. ISBN 978-0-486-60771-9. Archived from the original on 24 March 2017. Retrieved 28 February 2016. 978-0-486-60771-9
McLean, Ian S. (2008). Electronic Imaging in Astronomy: Detectors and Instrumentation. Springer. p. 529. ISBN 978-3-540-76582-0. 978-3-540-76582-0
Williams, David R. (2 February 2010). "Moon Fact Sheet". NASA (National Space Science Data Center). Archived from the original on 23 March 2010. Retrieved 9 April 2010. https://nssdc.gsfc.nasa.gov/planetary/factsheet/moonfact.html
Dolan, Michelle M.; Mathews, Grant J.; Lam, Doan Duc; Lan, Nguyen Quynh; Herczeg, Gregory J.; Dearborn, David S. P. (2017). "Evolutionary Tracks for Betelgeuse". The Astrophysical Journal. 819 (1): 7. arXiv:1406.3143. Bibcode:2016ApJ...819....7D. doi:10.3847/0004-637X/819/1/7. S2CID 37913442. https://doi.org/10.3847%2F0004-637X%2F819%2F1%2F7
"Brightest comets seen since 1935". International Comet Quarterly. Archived from the original on 28 December 2011. Retrieved 18 December 2011. http://www.icq.eps.harvard.edu/brightest.html
Winkler, P. Frank; Gupta, Gaurav; Long, Knox S. (2003). "The SN 1006 Remnant: Optical Proper Motions, Deep Imaging, Distance, and Brightness at Maximum". The Astrophysical Journal. 585 (1): 324–335. arXiv:astro-ph/0208415. Bibcode:2003ApJ...585..324W. doi:10.1086/345985. S2CID 1626564. /wiki/The_Astrophysical_Journal
Siegel, Ethan (6 September 2016). "Ten Ways 'Proxima b' Is Different From Earth". Forbes. Retrieved 19 February 2023. https://www.forbes.com/sites/startswithabang/2016/09/06/ten-ways-proxima-b-is-different-from-earth/
"Supernova 1054 – Creation of the Crab Nebula". SEDS. Archived from the original on 28 May 2014. Retrieved 29 July 2014. http://messier.seds.org/more/m001_sn.html
"Heavens-above.com". Heavens-above. Archived from the original on 5 July 2009. Retrieved 22 December 2007. http://www.heavens-above.com/satinfo.aspx?SatID=25544
Mallama, A.; Hilton, J.L. (2018). "Computing Apparent Planetary Magnitudes for The Astronomical Almanac". Astronomy and Computing. 25: 10–24. arXiv:1808.01973. Bibcode:2018A&C....25...10M. doi:10.1016/j.ascom.2018.08.002. S2CID 69912809. /wiki/ArXiv_(identifier)
Mallama, A.; Hilton, J.L. (2018). "Computing Apparent Planetary Magnitudes for The Astronomical Almanac". Astronomy and Computing. 25: 10–24. arXiv:1808.01973. Bibcode:2018A&C....25...10M. doi:10.1016/j.ascom.2018.08.002. S2CID 69912809. /wiki/ArXiv_(identifier)
NASA Science Question of the Week. Gsfc.nasa.gov (7 April 2006). Retrieved on 26 April 2013. https://web.archive.org/web/20070627044109/http://www.gsfc.nasa.gov/scienceques2005/20060406.htm
Tomkin, Jocelyn (April 1998). "Once and Future Celestial Kings". Sky and Telescope. 95 (4): 59–63. Bibcode:1998S&T....95d..59T. – based on computations from HIPPARCOS data. (The calculations exclude stars whose distance or proper motion is uncertain.)
https://www.thefreelibrary.com/Once+and+future+celestial+kings.-a020468305
Agrawal, Dulli Chandra (30 March 2016). "Apparent magnitude of earthshine: a simple calculation". European Journal of Physics. 37 (3). IOP Publishing: 035601. Bibcode:2016EJPh...37c5601A. doi:10.1088/0143-0807/37/3/035601. ISSN 0143-0807. S2CID 124231299. /wiki/Bibcode_(identifier)
Mallama, A.; Hilton, J.L. (2018). "Computing Apparent Planetary Magnitudes for The Astronomical Almanac". Astronomy and Computing. 25: 10–24. arXiv:1808.01973. Bibcode:2018A&C....25...10M. doi:10.1016/j.ascom.2018.08.002. S2CID 69912809. /wiki/ArXiv_(identifier)
Mallama, A.; Hilton, J.L. (2018). "Computing Apparent Planetary Magnitudes for The Astronomical Almanac". Astronomy and Computing. 25: 10–24. arXiv:1808.01973. Bibcode:2018A&C....25...10M. doi:10.1016/j.ascom.2018.08.002. S2CID 69912809. /wiki/ArXiv_(identifier)
Mallama, A.; Hilton, J.L. (2018). "Computing Apparent Planetary Magnitudes for The Astronomical Almanac". Astronomy and Computing. 25: 10–24. arXiv:1808.01973. Bibcode:2018A&C....25...10M. doi:10.1016/j.ascom.2018.08.002. S2CID 69912809. /wiki/ArXiv_(identifier)
Mallama, A.; Hilton, J.L. (2018). "Computing Apparent Planetary Magnitudes for The Astronomical Almanac". Astronomy and Computing. 25: 10–24. arXiv:1808.01973. Bibcode:2018A&C....25...10M. doi:10.1016/j.ascom.2018.08.002. S2CID 69912809. /wiki/ArXiv_(identifier)
Mallama, A.; Hilton, J.L. (2018). "Computing Apparent Planetary Magnitudes for The Astronomical Almanac". Astronomy and Computing. 25: 10–24. arXiv:1808.01973. Bibcode:2018A&C....25...10M. doi:10.1016/j.ascom.2018.08.002. S2CID 69912809. /wiki/ArXiv_(identifier)
"Sirius". SIMBAD Astronomical Database. Archived from the original on 11 January 2014. Retrieved 26 June 2010. http://simbad.u-strasbg.fr/simbad/sim-id?Ident=Sirius
"Canopus". SIMBAD Astronomical Database. Archived from the original on 14 July 2014. Retrieved 26 June 2010. http://simbad.u-strasbg.fr/simbad/sim-id?Ident=Canopus
Mallama, A.; Hilton, J.L. (2018). "Computing Apparent Planetary Magnitudes for The Astronomical Almanac". Astronomy and Computing. 25: 10–24. arXiv:1808.01973. Bibcode:2018A&C....25...10M. doi:10.1016/j.ascom.2018.08.002. S2CID 69912809. /wiki/ArXiv_(identifier)
"Arcturus". SIMBAD Astronomical Database. Archived from the original on 14 January 2014. Retrieved 26 June 2010. http://simbad.u-strasbg.fr/simbad/sim-id?Ident=Arcturus
"Vega". SIMBAD Astronomical Database. Archived from the original on 7 July 2015. Retrieved 14 April 2010. http://simbad.u-strasbg.fr/simbad/sim-id?Ident=Vega
Mallama, A.; Hilton, J.L. (2018). "Computing Apparent Planetary Magnitudes for The Astronomical Almanac". Astronomy and Computing. 25: 10–24. arXiv:1808.01973. Bibcode:2018A&C....25...10M. doi:10.1016/j.ascom.2018.08.002. S2CID 69912809. /wiki/ArXiv_(identifier)
Mallama, A.; Hilton, J.L. (2018). "Computing Apparent Planetary Magnitudes for The Astronomical Almanac". Astronomy and Computing. 25: 10–24. arXiv:1808.01973. Bibcode:2018A&C....25...10M. doi:10.1016/j.ascom.2018.08.002. S2CID 69912809. /wiki/ArXiv_(identifier)
Mallama, A.; Hilton, J.L. (2018). "Computing Apparent Planetary Magnitudes for The Astronomical Almanac". Astronomy and Computing. 25: 10–24. arXiv:1808.01973. Bibcode:2018A&C....25...10M. doi:10.1016/j.ascom.2018.08.002. S2CID 69912809. /wiki/ArXiv_(identifier)
Mallama, A.; Hilton, J.L. (2018). "Computing Apparent Planetary Magnitudes for The Astronomical Almanac". Astronomy and Computing. 25: 10–24. arXiv:1808.01973. Bibcode:2018A&C....25...10M. doi:10.1016/j.ascom.2018.08.002. S2CID 69912809. /wiki/ArXiv_(identifier)
Mallama, A.; Hilton, J.L. (2018). "Computing Apparent Planetary Magnitudes for The Astronomical Almanac". Astronomy and Computing. 25: 10–24. arXiv:1808.01973. Bibcode:2018A&C....25...10M. doi:10.1016/j.ascom.2018.08.002. S2CID 69912809. /wiki/ArXiv_(identifier)
Evans, N. R.; Schaefer, G. H.; Bond, H. E.; Bono, G.; Karovska, M.; Nelan, E.; Sasselov, D.; Mason, B. D. (2008). "Direct Detection of the Close Companion of Polaris with The Hubble Space Telescope". The Astronomical Journal. 136 (3): 1137. arXiv:0806.4904. Bibcode:2008AJ....136.1137E. doi:10.1088/0004-6256/136/3/1137. S2CID 16966094. /wiki/ArXiv_(identifier)
"SIMBAD-M31". SIMBAD Astronomical Database. Archived from the original on 19 May 2014. Retrieved 29 November 2009. http://simbad.u-strasbg.fr/simbad/sim-id?Ident=M31
Yeomans; Chamberlin. "Horizon Online Ephemeris System for Ganymede (Major Body 503)". California Institute of Technology, Jet Propulsion Laboratory. Archived from the original on 2 February 2014. Retrieved 14 April 2010. (4.38 on 1951-Oct-03) https://ssd.jpl.nasa.gov/horizons.cgi?find_body=1&body_group=mb&sstr=503
"M41 possibly recorded by Aristotle". SEDS (Students for the Exploration and Development of Space). 28 July 2006. Archived from the original on 18 April 2017. Retrieved 29 November 2009. http://messier.seds.org/more/m041_ari.html
"Uranus Fact Sheet". nssdc.gsfc.nasa.gov. Archived from the original on 22 January 2019. Retrieved 8 November 2018. https://nssdc.gsfc.nasa.gov/planetary/factsheet/uranusfact.html
Mallama, A.; Hilton, J.L. (2018). "Computing Apparent Planetary Magnitudes for The Astronomical Almanac". Astronomy and Computing. 25: 10–24. arXiv:1808.01973. Bibcode:2018A&C....25...10M. doi:10.1016/j.ascom.2018.08.002. S2CID 69912809. /wiki/ArXiv_(identifier)
Mallama, A.; Hilton, J.L. (2018). "Computing Apparent Planetary Magnitudes for The Astronomical Almanac". Astronomy and Computing. 25: 10–24. arXiv:1808.01973. Bibcode:2018A&C....25...10M. doi:10.1016/j.ascom.2018.08.002. S2CID 69912809. /wiki/ArXiv_(identifier)
"SIMBAD-M33". SIMBAD Astronomical Database. Archived from the original on 13 September 2014. Retrieved 28 November 2009. http://simbad.u-strasbg.fr/simbad/sim-id?Ident=M33
Lodriguss, Jerry (1993). "M33 (Triangulum Galaxy)". Archived from the original on 15 January 2010. Retrieved 27 November 2009. (Shows bolometric magnitude not visual magnitude.) http://www.astropix.com/HTML/A_FALL/M33.HTM
Mallama, A.; Hilton, J.L. (2018). "Computing Apparent Planetary Magnitudes for The Astronomical Almanac". Astronomy and Computing. 25: 10–24. arXiv:1808.01973. Bibcode:2018A&C....25...10M. doi:10.1016/j.ascom.2018.08.002. S2CID 69912809. /wiki/ArXiv_(identifier)
"Vmag<6.5". SIMBAD Astronomical Database. Archived from the original on 22 February 2015. Retrieved 25 June 2010. http://simbad.u-strasbg.fr/simbad/sim-sam?Criteria=Vmag%3C6.5
"Messier 81". SEDS (Students for the Exploration and Development of Space). 2 September 2007. Archived from the original on 14 July 2017. Retrieved 28 November 2009. http://messier.seds.org/m/m081.html
Mallama, A.; Hilton, J.L. (2018). "Computing Apparent Planetary Magnitudes for The Astronomical Almanac". Astronomy and Computing. 25: 10–24. arXiv:1808.01973. Bibcode:2018A&C....25...10M. doi:10.1016/j.ascom.2018.08.002. S2CID 69912809. /wiki/ArXiv_(identifier)
"Neptune Fact Sheet". nssdc.gsfc.nasa.gov. Archived from the original on 10 January 2019. Retrieved 8 November 2018. https://nssdc.gsfc.nasa.gov/planetary/factsheet/neptunefact.html
Mallama, A.; Hilton, J.L. (2018). "Computing Apparent Planetary Magnitudes for The Astronomical Almanac". Astronomy and Computing. 25: 10–24. arXiv:1808.01973. Bibcode:2018A&C....25...10M. doi:10.1016/j.ascom.2018.08.002. S2CID 69912809. /wiki/ArXiv_(identifier)
Mallama, A.; Hilton, J.L. (2018). "Computing Apparent Planetary Magnitudes for The Astronomical Almanac". Astronomy and Computing. 25: 10–24. arXiv:1808.01973. Bibcode:2018A&C....25...10M. doi:10.1016/j.ascom.2018.08.002. S2CID 69912809. /wiki/ArXiv_(identifier)
John E. Bortle (February 2001). "The Bortle Dark-Sky Scale". Sky & Telescope. Archived from the original on 23 March 2009. Retrieved 18 November 2009. https://skyandtelescope.org/astronomy-resources/light-pollution-and-astronomy-the-bortle-dark-sky-scale/
Mallama, A.; Hilton, J.L. (2018). "Computing Apparent Planetary Magnitudes for The Astronomical Almanac". Astronomy and Computing. 25: 10–24. arXiv:1808.01973. Bibcode:2018A&C....25...10M. doi:10.1016/j.ascom.2018.08.002. S2CID 69912809. /wiki/ArXiv_(identifier)
Yeomans; Chamberlin. "Horizon Online Ephemeris System for Titan (Major Body 606)". California Institute of Technology, Jet Propulsion Laboratory. Archived from the original on 13 November 2012. Retrieved 28 June 2010. (8.10 on 2003-Dec-30) Archived 13 November 2012 at the Wayback Machine https://ssd.jpl.nasa.gov/horizons.cgi?find_body=1&body_group=mb&sstr=606
"Classic Satellites of the Solar System". Observatorio ARVAL. Archived from the original on 31 July 2010. Retrieved 25 June 2010. https://web.archive.org/web/20100731193653/http://www.oarval.org/ClasSaten.htm
"Planetary Satellite Physical Parameters". JPL (Solar System Dynamics). 3 April 2009. Archived from the original on 23 July 2009. Retrieved 25 July 2009. https://ssd.jpl.nasa.gov/?sat_phys_par
"AstDys (10) Hygiea Ephemerides". Department of Mathematics, University of Pisa, Italy. Archived from the original on 12 May 2014. Retrieved 26 June 2010. http://hamilton.dm.unipi.it/astdys/index.php?pc=1.1.3.1&n=10&oc=500&y0=2095&m0=6&d0=27&h0=00&mi0=00&y1=2095&m1=6&d1=28&h1=00&mi1=00&ti=1.0&tiu=days
Zarenski, Ed (2004). "Limiting Magnitude in Binoculars" (PDF). Cloudy Nights. Archived (PDF) from the original on 21 July 2011. Retrieved 6 May 2011. http://www.cloudynights.com/documents/limiting.pdf
"Tracking the Apollo Flights". Static Web Pages for Physics and Astronomy. 21 December 1968. Retrieved 20 March 2024. https://pages.astronomy.ua.edu/keel/space/apollo.html
"Classic Satellites of the Solar System". Observatorio ARVAL. Archived from the original on 31 July 2010. Retrieved 25 June 2010. https://web.archive.org/web/20100731193653/http://www.oarval.org/ClasSaten.htm
"What Is the Most Massive Star?". Space.com. Archived from the original on 11 January 2019. Retrieved 5 November 2018. https://www.space.com/41313-most-massive-star.html
"Planetary Satellite Physical Parameters". JPL (Solar System Dynamics). 3 April 2009. Archived from the original on 23 July 2009. Retrieved 25 July 2009. https://ssd.jpl.nasa.gov/?sat_phys_par
Williams, David R. (7 September 2006). "Pluto Fact Sheet". National Space Science Data Center. NASA. Archived from the original on 1 July 2010. Retrieved 26 June 2010. https://nssdc.gsfc.nasa.gov/planetary/factsheet/plutofact.html
"AstDys (2060) Chiron Ephemerides". Department of Mathematics, University of Pisa, Italy. Archived from the original on 29 June 2011. Retrieved 26 June 2010. https://newton.spacedys.com/astdys/index.php?pc=1.1.3.1&n=2060&oc=500&y0=2097&m0=4&d0=3&h0=00&mi0=00&y1=2097&m1=4&d1=3&h1=00&mi1=00&ti=1.0&tiu=days
"AstDys (136472) Makemake Ephemerides". Department of Mathematics, University of Pisa, Italy. Archived from the original on 29 June 2011. Retrieved 26 June 2010. https://newton.spacedys.com/astdys/index.php?pc=1.1.3.1&n=136472&oc=500&y0=2010&m0=3&d0=17&h0=00&mi0=00&y1=2010&m1=3&d1=17&h1=00&mi1=00&ti=1.0&tiu=days
"AstDys (136108) Haumea Ephemerides". Department of Mathematics, University of Pisa, Italy. Archived from the original on 29 June 2011. Retrieved 26 June 2010. https://newton.spacedys.com/astdys/index.php?pc=1.1.3.1&n=136108&oc=500&y0=2010&m0=4&d0=6&h0=00&mi0=00&y1=2010&m1=4&d1=6&h1=00&mi1=00&ti=1.0&tiu=days
"Catalina Sky Survey (CSS) Facilities". Archived from the original on 3 November 2019. Retrieved 3 November 2019. https://catalina.lpl.arizona.edu/about/facilities
"Planetary Satellite Physical Parameters". JPL (Solar System Dynamics). 3 April 2009. Archived from the original on 23 July 2009. Retrieved 25 July 2009. https://ssd.jpl.nasa.gov/?sat_phys_par
Steve Cullen (sgcullen) (5 October 2009). "17 New Asteroids Found by LightBuckets". LightBuckets. Archived from the original on 31 January 2010. Retrieved 15 November 2009. https://web.archive.org/web/20100131051349/http://www.lightbuckets.com/news/37/17-new-asteroids-found-by-lightbuckets/
Boffin, H.M.J.; Pourbaix, D. (2014). "Possible astrometric discovery of a substellar companion to the closest binary brown dwarf system WISE J104915.57–531906.1". Astronomy and Astrophysics. 561: 5. arXiv:1312.1303. Bibcode:2014A&A...561L...4B. doi:10.1051/0004-6361/201322975. S2CID 33043358. /wiki/ArXiv_(identifier)
"Pan-STARRS limiting magnitude". Archived from the original on 24 November 2020. Retrieved 12 August 2019. https://web.archive.org/web/20201124152242/https://panstarrs.ifa.hawaii.edu/pswww/?page_id=34
Sheppard, Scott S. "Saturn's Known Satellites". Carnegie Institution (Department of Terrestrial Magnetism). Archived from the original on 15 May 2011. Retrieved 28 June 2010. /wiki/Scott_S._Sheppard
What is the faintest object imaged by ground-based telescopes? Archived 2 February 2016 at the Wayback Machine, by: The Editors of Sky Telescope, 24 July 2006 http://www.skyandtelescope.com/astronomy-resources/astronomy-questions-answers/what-is-the-faintest-object-imaged-by-ground-based-telescopes/
"New Image of Comet Halley in the Cold". ESO. 1 September 2003. Archived from the original on 13 March 2025. Retrieved 29 April 2025. https://web.archive.org/web/20250313011405/https://www.eso.org/public/news/eso0328/
Robertson, B. E.; et al. (2023). "Identification and properties of intense star-forming galaxies at redshifts z > 10". Nature Astronomy. 7 (5): 611–621. arXiv:2212.04480. Bibcode:2023NatAs...7..611R. doi:10.1038/s41550-023-01921-1. S2CID 257968812. /wiki/ArXiv_(identifier)
Illingworth, G. D.; Magee, D.; Oesch, P. A.; Bouwens, R. J.; Labbé, I.; Stiavelli, M.; van Dokkum, P. G.; Franx, M.; Trenti, M.; Carollo, C. M.; Gonzalez, V. (21 October 2013). "The HST eXtreme Deep Field XDF: Combining all ACS and WFC3/IR Data on the HUDF Region into the Deepest Field Ever". The Astrophysical Journal Supplement Series. 209 (1): 6. arXiv:1305.1931. Bibcode:2013ApJS..209....6I. doi:10.1088/0067-0049/209/1/6. S2CID 55052332. /wiki/ArXiv_(identifier)
"Hubble Finds Smallest Kuiper Belt Object Ever Seen". NASA. Archived from the original on 9 June 2017. Retrieved 16 March 2018. https://www.nasa.gov/mission_pages/hubble/science/hst_img_kuiper-smallest.html