Removing k vertices from a path graph can split the remaining graph into as many as k + 1 connected components. The maximum ratio of components to removed vertices is achieved by removing one vertex (from the interior of the path) and splitting it into two components. Therefore, paths are 1/2-tough. In contrast, removing k vertices from a cycle graph leaves at most k remaining connected components, and sometimes leaves exactly k connected components, so a cycle is 1-tough.
If a graph is t-tough, then one consequence (obtained by setting k = 2) is that any set of 2t − 1 nodes can be removed without splitting the graph in two. That is, every t-tough graph is also 2t-vertex-connected.
Chvátal (1973) observed that every cycle, and therefore every Hamiltonian graph, is 1-tough; that is, being 1-tough is a necessary condition for a graph to be Hamiltonian. He conjectured that the connection between toughness and Hamiltonicity goes in both directions: that there exists a threshold t such that every t-tough graph is Hamiltonian. Chvátal's original conjecture that t = 2 would have proven Fleischner's theorem but was disproved by Bauer, Broersma & Veldman (2000). The existence of a larger toughness threshold for Hamiltonicity remains open, and is sometimes called Chvátal's toughness conjecture.
Testing whether a graph is 1-tough is co-NP-complete. That is, the decision problem whose answer is "yes" for a graph that is not 1-tough, and "no" for a graph that is 1-tough, is NP-complete. The same is true for any fixed positive rational number q: testing whether a graph is q-tough is co-NP-complete (Bauer, Hakimi & Schmeichel 1990).