The binary cyclic group can be defined as the set of 2 n {\displaystyle 2n} th roots of unity—that is, the set { ω n k | k ∈ { 0 , 1 , 2 , . . . , 2 n − 1 } } {\displaystyle \left\{\omega _{n}^{k}\;|\;k\in \{0,1,2,...,2n-1\}\right\}} , where
using multiplication as the group operation.
Coxeter, H. S. M. (1959), "Symmetrical definitions for the binary polyhedral groups", Proc. Sympos. Pure Math., Vol. 1, Providence, R.I.: American Mathematical Society, pp. 64–87, MR 0116055. /wiki/Harold_Scott_MacDonald_Coxeter ↩