Low-rank adaptation (LoRA) is an adapter-based technique for efficiently fine-tuning models. The basic idea is to design a low-rank matrix that is then added to the original matrix. An adapter, in this context, is a collection of low-rank matrices which, when added to a base model, produces a fine-tuned model. It allows for performance that approaches full-model fine-tuning with lower space requirements. A language model with billions of parameters may be LoRA fine-tuned with only several millions of parameters.
ReFT methods operate on a frozen base model and learn task-specific interventions on hidden representations and train interventions that manipulate a small fraction of model representations to steer model behaviors towards solving downstream tasks at inference time. One specific method within the ReFT family is Low-rank Linear Subspace ReFT (LoReFT), which intervenes on hidden representations in the linear subspace spanned by a low-rank projection matrix. LoReFT can be seen as the representation-based equivalent of Low-rank Adaptation (LoRA).
Commercially-offered large language models can sometimes be fine-tuned if the provider offers a fine-tuning API. As of June 19, 2023, language model fine-tuning APIs are offered by OpenAI and Microsoft Azure's Azure OpenAI Service for a subset of their models, as well as by Google Cloud Platform for some of their PaLM models, and by others.
Quinn, Joanne (2020). Dive into deep learning: tools for engagement. Thousand Oaks, California. p. 551. ISBN 978-1-5443-6137-6. Archived from the original on January 10, 2023. Retrieved January 10, 2023.{{cite book}}: CS1 maint: location missing publisher (link) 978-1-5443-6137-6
"CS231n Convolutional Neural Networks for Visual Recognition". cs231n.github.io. Retrieved 9 March 2023. https://cs231n.github.io/transfer-learning/
Liu, Haokun; Tam, Derek; Muqeeth, Mohammed; Mohta, Jay; Huang, Tenghao; Bansal, Mohit; Raffel, Colin A (2022). Koyejo, S.; Mohamed, S.; Agarwal, A.; Belgrave, D.; Cho, K.; Oh, A. (eds.). Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning (PDF). Advances in Neural Information Processing Systems. Vol. 35. Curran Associates, Inc. pp. 1950–1965. https://proceedings.neurips.cc/paper_files/paper/2022/file/0cde695b83bd186c1fd456302888454c-Paper-Conference.pdf
"CS231n Convolutional Neural Networks for Visual Recognition". cs231n.github.io. Retrieved 9 March 2023. https://cs231n.github.io/transfer-learning/
Zeiler, Matthew D; Fergus, Rob (2013). "Visualizing and Understanding Convolutional Networks". ECCV. arXiv:1311.2901. /wiki/ArXiv_(identifier)
Dodge, Jesse; Ilharco, Gabriel; Schwartz, Roy; Farhadi, Ali; Hajishirzi, Hannaneh; Smith, Noah (2020). "Fine-Tuning Pretrained Language Models: Weight Initializations, Data Orders, and Early Stopping". arXiv:2002.06305. {{cite journal}}: Cite journal requires |journal= (help) /wiki/ArXiv_(identifier)
Dingliwal, Saket; Shenoy, Ashish; Bodapati, Sravan; Gandhe, Ankur; Gadde, Ravi Teja; Kirchhoff, Katrin (2021). "Prompt Tuning GPT-2 language model for parameter-efficient domain adaptation of ASR systems". InterSpeech. arXiv:2112.08718. /wiki/ArXiv_(identifier)
Yu, Yue; Zuo, Simiao; Jiang, Haoming; Ren, Wendi; Zhao, Tuo; Zhang, Chao (2020). "Fine-Tuning Pre-trained Language Model with Weak Supervision: A Contrastive-Regularized Self-Training Approach". Association for Computational Linguistics. arXiv:2010.07835. /wiki/ArXiv_(identifier)
"Introducing ChatGPT". openai.com. Retrieved 9 March 2023. https://openai.com/blog/chatgpt
Glaese, Amelia; McAleese, Nat; Trębacz, Maja; Aslanides, John; Firoiu, Vlad; Ewalds, Timo; Rauh, Maribeth; Weidinger, Laura; Chadwick, Martin; Thacker, Phoebe; Campbell-Gillingham, Lucy; Uesato, Jonathan; Huang, Po-Sen; Comanescu, Ramona; Yang, Fan; See, Abigail; Dathathri, Sumanth; Greig, Rory; Chen, Charlie; Fritz, Doug; Elias, Jaume Sanchez; Green, Richard; Mokrá, Soňa; Fernando, Nicholas; Wu, Boxi; Foley, Rachel; Young, Susannah; Gabriel, Iason; Isaac, William; Mellor, John; Hassabis, Demis; Kavukcuoglu, Koray; Hendricks, Lisa Anne; Irving, Geoffrey (2022). "Improving alignment of dialogue agents via targeted human judgements". DeepMind. arXiv:2209.14375. /wiki/ArXiv_(identifier)
Radford, Alec; Kim, Jong Wook; Hallacy, Chris; Ramesh, Aditya; Goh, Gabriel; Agarwal, Sandhini; Sastry, Girish; Askell, Amanda; Mishkin, Pamela; Clark, Jack; Krueger, Gretchen; Sutskever, Ilya (2021). "Learning Transferable Visual Models From Natural Language Supervision". arXiv:2103.00020 [cs.CV]. /wiki/ArXiv_(identifier)
Kumar, Ananya; Raghunathan, Aditi; Jones, Robbie; Ma, Tengyu; Liang, Percy (2022). "Fine-Tuning can Distort Pretrained Features and Underperform Out-of-Distribution". ICLR. arXiv:2202.10054. /wiki/ArXiv_(identifier)
Wortsman, Mitchell; Ilharco, Gabriel; Kim, Jong Wook; Li, Mike; Kornblith, Simon; Roelofs, Rebecca; Gontijo-Lopes, Raphael; Hajishirzi, Hannaneh; Farhadi, Ali; Namkoong, Hongseok; Schmidt, Ludwig (2022). "Robust fine-tuning of zero-shot models". arXiv:2109.01903 [cs.CV]. /wiki/ArXiv_(identifier)
Hu, Edward J.; Shen, Yelong; Wallis, Phillip; Allen-Zhu, Zeyuan; Li, Yuanzhi; Wang, Shean; Wang, Lu; Chen, Weizhu (2022-01-28). "LoRA: Low-Rank Adaptation of Large Language Models". ICLR. arXiv:2106.09685. https://openreview.net/forum?id=nZeVKeeFYf9
Ryu, Simo (February 13, 2023). "Using Low-rank adaptation to quickly fine-tune diffusion models". GitHub. Retrieved June 19, 2023. https://github.com/cloneofsimo/lora
Cuenca, Pedro; Paul, Sayak (January 26, 2023). "Using LoRA for Efficient Stable Diffusion Fine-Tuning". Hugging Face. Retrieved June 19, 2023. https://huggingface.co/blog/lora
"Parameter-Efficient Fine-Tuning using 🤗 PEFT". huggingface.co. Retrieved 2023-06-20. https://huggingface.co/blog/peft
Wu, Zhengxuan; Arora, Aryaman; Wang, Zheng; Geiger, Atticus; Jurafsky, Dan; Manning, Christopher D.; Potts, Christopher (2024-04-07), ReFT: Representation Finetuning for Language Models, arXiv:2404.03592 /wiki/ArXiv_(identifier)
Wu, Zhengxuan; Arora, Aryaman; Wang, Zheng; Geiger, Atticus; Jurafsky, Dan; Manning, Christopher D.; Potts, Christopher (2024-04-07), ReFT: Representation Finetuning for Language Models, arXiv:2404.03592 /wiki/ArXiv_(identifier)
Dingliwal, Saket; Shenoy, Ashish; Bodapati, Sravan; Gandhe, Ankur; Gadde, Ravi Teja; Kirchhoff, Katrin (2021). "Prompt Tuning GPT-2 language model for parameter-efficient domain adaptation of ASR systems". InterSpeech. arXiv:2112.08718. /wiki/ArXiv_(identifier)
"Fine-tuning". OpenAI. Retrieved 2023-06-19. https://platform.openai.com/docs/guides/fine-tuning
"Learn how to customize a model for your application". Microsoft. Retrieved 2023-06-19. https://learn.microsoft.com/en-us/azure/cognitive-services/openai/how-to/fine-tuning
"Tune text foundation models". Retrieved 2023-06-19. https://cloud.google.com/vertex-ai/docs/generative-ai/models/tune-models