Database caching improves scalability by distributing query workload from backend to multiple cheap front-end systems. It allows flexibility in the processing of data; for example, the data of Platinum customers can be cached while that of ordinary customers are not. Caching can improve availability of data, by providing continued service for applications that depend only on cached tables even if the backend server is unavailable. Another benefit is improved data access speeds brought about by locality of data and smoothing out load peaks by avoiding round-trips between middle-tier and data-tier.4
Larson, Per-åke; Goldstein, Jonathan (2004). "MTCache: Transparent mid-tier database caching". CiteSeerX 10.1.1.95.875. {{cite journal}}: Cite journal requires |journal= (help) /wiki/CiteSeerX_(identifier) ↩
Altinel, Mehmet; Luo, Qiong; Krishnamurthy, Sailesh; Mohan, C.; Pirahesh, Hamid; Lindsay, Bruce G.; Woo, Honguk; Brown, Larry (2002). "DBCache: Database Caching For Web Application Servers" (PDF). CiteSeerX 10.1.1.104.8991. {{cite journal}}: Cite journal requires |journal= (help) http://www.cse.ust.hk/catalac/papers/dbcache_demo_sigmod02.pdf ↩
"Middle-tier Database Caching for e-Business". CiteSeerX 10.1.1.140.8455. {{cite journal}}: Cite journal requires |journal= (help) /wiki/CiteSeerX_(identifier) ↩
"Why Databases Should Bypass the Linux Page Cache". 13 March 2024. Retrieved 2 April 2024. https://thenewstack.io/why-databases-should-bypass-the-linux-page-cache/ ↩