Let the setting be as in the lede. In the proof one uses the following alternative definition of the canonical map.
Let i ′ : X ^ → X , i : S ^ → S {\displaystyle i':{\widehat {X}}\to X,i:{\widehat {S}}\to S} be the canonical maps. Then we have the base change map of O S ^ {\displaystyle {\mathcal {O}}_{\widehat {S}}} -modules
where f ^ : X ^ → S ^ {\displaystyle {\widehat {f}}:{\widehat {X}}\to {\widehat {S}}} is induced by f : X → S {\displaystyle f:X\to S} . Since F {\displaystyle {\mathcal {F}}} is coherent, we can identify i ′ ∗ F {\displaystyle i'^{*}{\mathcal {F}}} with F ^ {\displaystyle {\widehat {\mathcal {F}}}} . Since R q f ∗ F {\displaystyle R^{q}f_{*}{\mathcal {F}}} is also coherent (as f is proper), doing the same identification, the above reads:
Using f : X n → S n {\displaystyle f:X_{n}\to S_{n}} where X n = ( X 0 , O X / J n + 1 ) {\displaystyle X_{n}=(X_{0},{\mathcal {O}}_{X}/{\mathcal {J}}^{n+1})} and S n = ( S 0 , O S / I n + 1 ) {\displaystyle S_{n}=(S_{0},{\mathcal {O}}_{S}/{\mathcal {I}}^{n+1})} , one also obtains (after passing to limit):
where F n {\displaystyle {\mathcal {F}}_{n}} are as before. One can verify that the composition of the two maps is the same map in the lede. (cf. EGA III-1, section 4)
Grothendieck & Dieudonné 1961, 4.1.5 - Grothendieck, Alexandre; Dieudonné, Jean (1961). "Eléments de géométrie algébrique: III. Étude cohomologique des faisceaux cohérents, Première partie". Publications Mathématiques de l'IHÉS. 11. doi:10.1007/bf02684274. MR 0217085. http://www.numdam.org/item/PMIHES_1961__11__5_0 ↩
Grothendieck & Dieudonné 1961, 4.2.1 - Grothendieck, Alexandre; Dieudonné, Jean (1961). "Eléments de géométrie algébrique: III. Étude cohomologique des faisceaux cohérents, Première partie". Publications Mathématiques de l'IHÉS. 11. doi:10.1007/bf02684274. MR 0217085. http://www.numdam.org/item/PMIHES_1961__11__5_0 ↩
Hartshorne 1977, Ch. III. Corollary 11.2 - Hartshorne, Robin (1977), Algebraic Geometry, Graduate Texts in Mathematics, vol. 52, New York: Springer-Verlag, ISBN 978-0-387-90244-9, MR 0463157 https://mathscinet.ams.org/mathscinet-getitem?mr=0463157 ↩
The same argument as in the preceding corollary ↩
Hartshorne 1977, Ch. III. Corollary 11.3 - Hartshorne, Robin (1977), Algebraic Geometry, Graduate Texts in Mathematics, vol. 52, New York: Springer-Verlag, ISBN 978-0-387-90244-9, MR 0463157 https://mathscinet.ams.org/mathscinet-getitem?mr=0463157 ↩