Historically, due to the short time scale of human observation, mosaic landscapes were perceived to be static patterns of human population mosaics.2 This focus centered on the idea that the status of a particular population, community, or ecosystem could be understood by studying a particular patch within a mosaic. However, this perception ignored the conditions that interact with, and connect patches. In 1979, Bormann and Likens coined the phrase shifting mosaic to describe the theory that landscapes change and fluctuate, and are in fact dynamic.3 This is related to the battle of cells that occurs in a Petri dish.
Patch dynamics refers to the concept that landscapes are dynamic.4 There are three states that a patch can exist in: potential, active, and degraded. Patches in the potential state are transformed into active patches through colonization of the patch by dispersing species arriving from other active or degrading patches. Patches are transformed from the active state to the degraded state when the patch is abandoned, and patches change from degraded to active through a process of recovery.5
Logging, fire, farming, and reforestation can all contribute to the process of colonization, and can effectively change the shape of the patch. Patch dynamics also refers to changes in the structure, function, and composition of individual patches that can, for example, affect the rate of nutrient cycling.
Patches are also linked. Although patches may be separated in space, migration can occur from one patch to another. This migration maintains the population of some patches, and can be the mechanism by which some plant species spread. This implies that ecological systems within landscapes are open, rather than closed and isolated. (Pickett, 2006)
Recognizing the patch dynamics within a system is needed for conservation (ecology) efforts to succeed. Successful conservation includes understanding how a patch changes and predicting how they will be affected by external forces.6 These externalities include natural effects, such as land use, disturbance, restoration, and succession, and the effects of human activities. In a sense, conservation is the active maintenance of patch dynamics (Pickett, 2006). The analysis of patch dynamics could be used to predict changes in biodiversity of an ecosystem. When patches of species can be tracked, it has been shown that fluctuations on the biggest patch (the most dominant species) can be used as an early warning of a biodiversity collapse.7 That means that if external conditions, like climate change and habitat fragmentation, change the internal dynamics of patches, a sharp reduction in biodiversity can be detected before it is produced.89
Pickett, Steward T.A.; White, P.S. (1985). The Ecology of Natural Disturbance and Patch Dynamics. Academic Press. ISBN 0123960215. 0123960215 ↩
Bogin, Barry (1999). Patterns of human growth (2nd ed.). Cambridge: Cambridge University Press. ISBN 9780521564380. 9780521564380 ↩
Bormann, F. Herbert; Likens, Gene E. (1979). Pattern and Process in a Forested Ecosystem. doi:10.1007/978-1-4612-6232-9. ISBN 978-0-387-94344-2. 978-0-387-94344-2 ↩
Wright, Justin P.; Gurney, W.S.C.; C.G., Jones (2004). "Patch dynamics in a landscape modified by ecosystem engineers" (PDF). OIKOS. 105 (2): 336–348. doi:10.1111/j.0030-1299.2004.12654.x. ISSN 0030-1299. Archived from the original (PDF) on 2010-06-26. https://web.archive.org/web/20100626020412/http://ecostudies.org/reprints/Wright_et_al_2004_Patch_Dynamics_Oikos_105_336-348.pdf ↩
Furness, Euan N.; Garwood, Russell J.; Mannion, Philip D.; Sutton, Mark D. (2021). "Evolutionary simulations clarify and reconcile biodiversity-disturbance models". Proceedings of the Royal Society B: Biological Sciences. 288 (1949). doi:10.1098/rspb.2021.0240. ISSN 0962-8452. PMC 8059584. PMID 33878917. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8059584 ↩
Saravia, Leonardo A.; Momo, Fernando R. (2017-07-01). "Biodiversity collapse and early warning indicators in a spatial phase transition between neutral and niche communities". Oikos. 127: 111–124. doi:10.1111/oik.04256. ISSN 1600-0706. https://peerj.com/preprints/1589/ ↩
Corrado, Raffaele (2014). "Early warning signals of desertification transitions in semiarid ecosystems". Physical Review E. 90 (6): 062705. Bibcode:2014PhRvE..90f2705C. doi:10.1103/physreve.90.062705. PMID 25615127. /wiki/Bibcode_(identifier) ↩