The co-occurrence of GW170817 with GRB 170817A in both space and time strongly implies that neutron star mergers create short gamma-ray bursts. The subsequent detection of Swope Supernova Survey event 2017a (SSS17a) in the area where GW170817 and GRB 170817A were known to have occurred—and its having the expected characteristics of a kilonova—strongly imply that neutron star mergers are responsible for kilonovae as well.
Also in October 2018, scientists presented a new way to use information from gravitational wave events (especially those involving the merger of neutron stars like GW170817) to determine the Hubble constant, which establishes the rate of expansion of the universe. The two earlier methods for finding the Hubble constant—one based on redshifts and another based on the cosmic distance ladder—disagree by about 10%. This difference, the Hubble tension, might be reconciled by using kilonovae as another type of standard candle.
In April 2019, the LIGO and Virgo gravitational wave observatories announced the detection of GW190425, a candidate event that is, with a probability 99.94%, the merger of two neutron stars. Despite extensive follow-up observations, no electromagnetic counterpart could be identified.
In December 2022, astronomers reported observing GRB 211211A for 51 seconds, the first evidence of a long GRB associated with the merger of a "compact binary object", thus potentially including a BNS. Following this, GRB 191019A (2019, 64s) and GRB 230307A (2023, 35s) have been argued to belong to this emerging class of BNS as long GRB progenitor. The indirect reasoning includes co-observations of kilonovae, for example the detection of tellurium and lanthanide in the spectral aftermath of the 2023 event.
Neutron star mergers emit an unusually diverse range of radiations which can be harmful to life on earth, including the initial short gamma-ray burst, emission from the radioactive decay of heavy elements scattered by the sGRB cocoon, the sGRB afterglow itself, and cosmic rays accelerated by the blast. In order of arrival, the (harmless) gravitational waves arrive first, the sGRB and afterglow photons seconds to hours after, with the cosmic ray particles arriving hundreds to thousands of years later. The lethal zone of the highly directional sGRB component extends hundreds of parsecs along the direction of its beam. These high-energy gamma ray photons would extinguish life directly, through thermal stress, molecular breakdown, and terminal radiation damage to both plants and animals.
Relative to supernovae, binary neutron star (BNS) mergers influence about the same volume of space, but are thought to be much rarer, and their most dangerous sGRB component requires that the beam be precisely oriented towards the Earth. Accordingly, the overall threat of a BNS event to human extinction is extremely low.
Neutron star mergers are rare, so most stars will form out of gas clouds which have few r-process metals. Our own solar system, however, did form from a gas cloud enriched with heavy metals. This suggests that metals heavier than iron, such as the platinum group metals, the rare earth elements, and the radioactive elements will be rarer in most solar systems as compared to our own.
"Einstein Telescope: Unlocking a New Era in Astronomy From 250 Meters Underground". https://scitechdaily.com/einstein-telescope-unlocking-a-new-era-in-astronomy-from-250-meters-underground/
"Nightmares of Neutron Stars". How the Universe Works. Season 7. Episode 1. 8 January 2019. Discovery+. https://www.discoveryplus.com/show/how-the-universe-works?season=7
Rosswog, Stephan (2013). "Astrophysics: Radioactive glow as a smoking gun". Nature. 500 (7464): 535–6. Bibcode:2013Natur.500..535R. doi:10.1038/500535a. PMID 23985867. S2CID 4401544. https://doi.org/10.1038%2F500535a
Stromberg, Joseph (16 July 2013). "All the Gold in the Universe Could Come from the Collisions of Neutron Stars". Smithsonian. Retrieved 27 April 2014. http://www.smithsonianmag.com/science-nature/all-the-gold-in-the-universe-could-come-from-the-collisions-of-neutron-stars-13474145/?page=1
Lea, Robert (21 February 2024). "James Webb Space Telescope finds neutron star mergers forge gold in the cosmos: 'It was thrilling'". Space.com. https://www.space.com/james-webb-space-telescope-fresh-gold-cosmos-kilonova-grb
Tanvir, N. R.; Levan, A. J.; Fruchter, A. S.; Hjorth, J.; Hounsell, R. A.; Wiersema, K.; Tunnicliffe, R. L. (2013). "A 'kilonova' associated with the short-duration γ-ray burst GRB 130603B". Nature. 500 (7464): 547–9. arXiv:1306.4971. Bibcode:2013Natur.500..547T. doi:10.1038/nature12505. PMID 23912055. S2CID 205235329. /wiki/ArXiv_(identifier)
Abbott, B. P.; et al. (LIGO Scientific Collaboration & Virgo Collaboration) (16 October 2017). "GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral". Physical Review Letters. 119 (16): 161101. arXiv:1710.05832. Bibcode:2017PhRvL.119p1101A. doi:10.1103/PhysRevLett.119.161101. PMID 29099225. S2CID 217163611. /wiki/LIGO_Scientific_Collaboration
Scharping, Nathaniel (18 October 2017). "Gravitational Waves Show How Fast The Universe is Expanding". Astronomy. Retrieved 18 October 2017. http://www.astronomy.com/news/2017/10/gravitational-waves-show-how-fast-the-universe-is-expanding
Cho, Adrian (16 October 2017). "Merging neutron stars generate gravitational waves and a celestial light show". Science. Retrieved 16 October 2017. https://www.science.org/content/article/merging-neutron-stars-generate-gravitational-waves-and-celestial-light-show
Landau, Elizabeth; Chou, Felicia; Washington, Dewayne; Porter, Molly (16 October 2017). "NASA Missions Catch First Light from a Gravitational-Wave Event". NASA. Retrieved 16 October 2017. https://www.jpl.nasa.gov/news/news.php?feature=6975
Overbye, Dennis (16 October 2017). "LIGO Detects Fierce Collision of Neutron Stars for the First Time". The New York Times. Retrieved 16 October 2017. /wiki/Dennis_Overbye
Krieger, Lisa M. (16 October 2017). "A Bright Light Seen Across The Universe, Proving Einstein Right - Violent collisions source of our gold, silver". The Mercury News. Retrieved 16 October 2017. http://www.mercurynews.com/2017/10/16/a-bright-light-seen-across-the-universe-proving-einstein-right/
Abbott, B. P.; et al. (LIGO, Virgo and other collaborations) (October 2017). "Multi-messenger Observations of a Binary Neutron Star Merger" (PDF). The Astrophysical Journal. 848 (2): L12. arXiv:1710.05833. Bibcode:2017ApJ...848L..12A. doi:10.3847/2041-8213/aa91c9. The optical and near-infrared spectra over these few days provided convincing arguments that this transient was unlike any other discovered in extensive optical wide-field surveys over the past decade. https://dcc.ligo.org/public/0145/P1700294/007/ApJL-MMAP-171017.pdf
Pan, Y.-C.; et al. (2017). "The Old Host-galaxy Environment of SSS17a, the First Electromagnetic Counterpart to a Gravitational-wave Source". The Astrophysical Journal. 848 (2): L30. arXiv:1710.05439. Bibcode:2017ApJ...848L..30P. doi:10.3847/2041-8213/aa9116. S2CID 3516168. https://doi.org/10.3847%2F2041-8213%2Faa9116
"Kilonovae, short gamma-ray bursts & neutron star mergers". Nature Astronomy. 16 October 2017. https://www.nature.com/collections/gghkrvklfb
Pease, Roland (2 May 2019). "Gravitational waves hunt now in overdrive". BBC News. https://www.bbc.com/news/science-environment-48137011
Bellm, Eric C.; et al. (7 December 2018). "The Zwicky Transient Facility: System Overview, Performance, and First Results". Publications of the Astronomical Society of the Pacific. 131 (995): 018002. arXiv:1902.01932. doi:10.1088/1538-3873/aaecbe. ISSN 0004-6280. /wiki/ArXiv_(identifier)
"All in the family: Kin of gravitational wave source discovered". EurekAlert! (Press release). University of Maryland. 16 October 2018. Retrieved 17 October 2018. https://www.eurekalert.org/pub_releases/2018-10/uom-ait101518.php
Troja, E.; et al. (16 October 2018). "A luminous blue kilonova and an off-axis jet from a compact binary merger at z=0.1341". Nature Communications. 9 (1): 4089. arXiv:1806.10624. Bibcode:2018NatCo...9.4089T. doi:10.1038/s41467-018-06558-7. PMC 6191439. PMID 30327476. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6191439
Mohon, Lee (16 October 2018). "GRB 150101B: A Distant Cousin to GW170817". NASA. Retrieved 17 October 2018. https://www.nasa.gov/mission_pages/chandra/images/grb-150101b-a-distant-cousin-to-gw170817.html
Wall, Mike (17 October 2018). "Powerful Cosmic Flash Is Likely Another Neutron-Star Merger". Space.com. Retrieved 17 October 2018. https://www.space.com/42158-another-neutron-star-crash-detected.html
Lerner, Louise (22 October 2018). "Gravitational waves could soon provide measure of universe's expansion". Phys.org. Retrieved 22 October 2018. https://phys.org/news/2018-10-gravitational-universe-expansion.html
Chen, Hsin-Yu; Fishbach, Maya; Holz, Daniel E. (17 October 2018). "A two per cent Hubble constant measurement from standard sirens within five years". Nature. 562 (7728): 545–547. arXiv:1712.06531. Bibcode:2018Natur.562..545C. doi:10.1038/s41586-018-0606-0. PMID 30333628. S2CID 52987203. /wiki/Nature_(journal)
Wood, Charlie (13 December 2021). "Cosmologists Parry Attacks on the Vaunted Cosmological Principle". Quanta Magazine. https://www.quantamagazine.org/giant-arc-of-galaxies-puts-basic-cosmology-under-scrutiny-20211213/
Abbott, B. P.; et al. (2020). "GW190425: Observation of a Compact Binary Coalescence with Total Mass ∼ 3.4 M⊙". The Astrophysical Journal Letters. 892 (1): L3. arXiv:2001.01761. Bibcode:2020ApJ...892L...3A. doi:10.3847/2041-8213/ab75f5. https://doi.org/10.3847%2F2041-8213%2Fab75f5
"Breaking: LIGO Detects Gravitational Waves From Another Neutron Star Merger". Discover Magazine. 25 April 2019. https://www.discovermagazine.com/the-sciences/breaking-ligo-detects-gravitational-waves-from-another-neutron-star-merger
"S190425z". GraceDB. Retrieved 13 August 2019. https://gracedb.ligo.org/superevents/S190425z/
Hosseinzadeh, G.; Cowperthwaite, P. S.; Gomez, S.; Villar, V. A. (18 July 2019). "Follow-up of the Neutron Star Bearing Gravitational Wave Candidate Events S190425z and S190426c with MMT and SOAR". Astrophys. J. 880 (1): L4. arXiv:1905.02186. Bibcode:2019ApJ...880L...4H. doi:10.3847/2041-8213/ab271c. hdl:10150/633863. S2CID 146121014. /wiki/V._Ashley_Villar
Troja, E.; Fryer, C. L.; O’Connor, B.; Ryan, G.; Dichiara, S.; Kumar, A.; Ito, N.; Gupta, R.; Wollaeger, R. T.; Norris, J. P.; Kawai, N.; Butler, N. R.; Aryan, A.; Misra, K.; Hosokawa, R. (8 December 2022). "A nearby long gamma-ray burst from a merger of compact objects". Nature. 612 (7939): 228–231. arXiv:2209.03363. Bibcode:2022Natur.612..228T. doi:10.1038/s41586-022-05327-3. ISSN 0028-0836. PMC 9729102. PMID 36477127. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9729102
Levan, Andrew J.; Malesani, Daniele B.; Gompertz, Benjamin P.; Nugent, Anya E.; Nicholl, Matt; Oates, Samantha R.; Perley, Daniel A.; Rastinejad, Jillian; Metzger, Brian D.; Schulze, Steve; Stanway, Elizabeth R.; Inkenhaag, Anne; Zafar, Tayyaba; Agüí Fernández, J. Feliciano; Chrimes, Ashley A. (22 June 2023). "A long-duration gamma-ray burst of dynamical origin from the nucleus of an ancient galaxy". Nature Astronomy. 7 (8): 976–985. arXiv:2303.12912. Bibcode:2023NatAs...7..976L. doi:10.1038/s41550-023-01998-8. ISSN 2397-3366. https://www.nature.com/articles/s41550-023-01998-8
Wodd, Charlie (11 December 2023). "Extra-Long Blasts Challenge Our Theories of Cosmic Cataclysms". Quanta magazine. https://www.quantamagazine.org/extra-long-blasts-challenge-our-theories-of-cosmic-cataclysms-20231211/
Levan, Andrew; Gompertz, Benjamin P.; Salafia, Om Sharan; Bulla, Mattia; Burns, Eric; Hotokezaka, Kenta; Izzo, Luca; Lamb, Gavin P.; Malesani, Daniele B.; Oates, Samantha R.; Ravasio, Maria Edvige; Rouco Escorial, Alicia; Schneider, Benjamin; Sarin, Nikhil; Schulze, Steve (25 October 2023). "Heavy element production in a compact object merger observed by JWST". Nature. 626 (8000): 737–741. arXiv:2307.02098. doi:10.1038/s41586-023-06759-1. ISSN 0028-0836. PMC 10881391. PMID 37879361. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10881391
Klesman, Alison (18 April 2019). "A new neutron star merger is caught on X-ray camera". Astronomy. Retrieved 18 April 2019. http://www.astronomy.com/news/2019/04/a-new-neutron-star-merger-is-caught-on-x-ray-camera
Wang, Xilu; et al. (N3AS and FIRE Collaboration) (November 2020). "MeV Gamma Rays from Fission: A Distinct Signature of Actinide Production in Neutron Star Mergers". The Astrophysical Journal. 903 (1): L3. arXiv:2008.03335. Bibcode:2020ApJ...903L...3W. doi:10.3847/2041-8213/abbe18. ISSN 0004-637X. https://doi.org/10.3847%2F2041-8213%2Fabbe18
Kisaka, Shota; Ioka, Kunihito; Kashiyama, Kazumi; Nakamura, Takashi (1 November 2018). "Scattered Short Gamma-Ray Bursts as Electromagnetic Counterparts to Gravitational Waves and Implications of GW170817 and GRB 170817A". The Astrophysical Journal. 867 (1): 39. arXiv:1711.00243. Bibcode:2018ApJ...867...39K. doi:10.3847/1538-4357/aae30a. ISSN 0004-637X. https://doi.org/10.3847%2F1538-4357%2Faae30a
Makhathini, S.; Mooley, K. P.; Brightman, M.; Hotokezaka, K.; Nayana, A. J.; Intema, H. T.; Dobie, D.; Lenc, E.; Perley, D. A.; Fremling, C.; Moldòn, J.; Lazzati, D.; Kaplan, D. L.; Balasubramanian, A.; Brown, I. S. (1 December 2021). "The Panchromatic Afterglow of GW170817: The Full Uniform Data Set, Modeling, Comparison with Previous Results, and Implications". The Astrophysical Journal. 922 (2): 154. arXiv:2006.02382. Bibcode:2021ApJ...922..154M. doi:10.3847/1538-4357/ac1ffc. ISSN 0004-637X. https://doi.org/10.3847%2F1538-4357%2Fac1ffc
Melott, Adrian L.; Thomas, Brian C. (May 2011). "Astrophysical Ionizing Radiation and Earth: A Brief Review and Census of Intermittent Intense Sources". Astrobiology. 11 (4): 343–361. arXiv:1102.2830. Bibcode:2011AsBio..11..343M. doi:10.1089/ast.2010.0603. ISSN 1531-1074. PMID 21545268. http://www.liebertpub.com/doi/10.1089/ast.2010.0603
Perkins, Haille M. L.; Ellis, John; Fields, Brian D.; Hartmann, Dieter H.; Liu, Zhenghai; McLaughlin, Gail C.; Surman, Rebecca; Wang, Xilu (1 February 2024). "Could a Kilonova Kill: A Threat Assessment". The Astrophysical Journal. 961 (2): 170. arXiv:2310.11627. Bibcode:2024ApJ...961..170P. doi:10.3847/1538-4357/ad12b7. ISSN 0004-637X. We found that cosmic rays are ... potentially lethal out to ∼10 pc, similar to the typical value of 8−20 pc for [core-collapse supernovae] ... The rarity of [binary neutron star mergers] combined with a small range of lethality means that ... the mean recurrence time of lethal mergers [on Earth] is much larger than the age of the Universe. https://doi.org/10.3847%2F1538-4357%2Fad12b7
https://iopscience.iop.org/article/10.3847/1538-4357/ad12b7 https://iopscience.iop.org/article/10.3847/1538-4357/ad12b7
Dar, Arnon; Laor, Ari; Shaviv, Nir J. (29 June 1998). "Life Extinctions by Cosmic Ray Jets". Physical Review Letters. 80 (26): 5813–5816. arXiv:astro-ph/9705008. Bibcode:1998PhRvL..80.5813D. doi:10.1103/PhysRevLett.80.5813. ISSN 0031-9007. https://link.aps.org/doi/10.1103/PhysRevLett.80.5813
Juckett, David A. (November 2009). "A 17-year oscillation in cancer mortality birth cohorts on three continents – synchrony to cosmic ray modulations one generation earlier". International Journal of Biometeorology. 53 (6): 487–499. Bibcode:2009IJBm...53..487J. doi:10.1007/s00484-009-0237-0. ISSN 0020-7128. PMID 19506913. http://link.springer.com/10.1007/s00484-009-0237-0
Perkins, Haille M. L.; Ellis, John; Fields, Brian D.; Hartmann, Dieter H.; Liu, Zhenghai; McLaughlin, Gail C.; Surman, Rebecca; Wang, Xilu (1 February 2024). "Could a Kilonova Kill: A Threat Assessment". The Astrophysical Journal. 961 (2): 170. arXiv:2310.11627. Bibcode:2024ApJ...961..170P. doi:10.3847/1538-4357/ad12b7. ISSN 0004-637X. We found that cosmic rays are ... potentially lethal out to ∼10 pc, similar to the typical value of 8−20 pc for [core-collapse supernovae] ... The rarity of [binary neutron star mergers] combined with a small range of lethality means that ... the mean recurrence time of lethal mergers [on Earth] is much larger than the age of the Universe. https://doi.org/10.3847%2F1538-4357%2Fad12b7