There are two variations of the zero-divisor graph commonly used.
In the original definition of Beck (1988), the vertices represent all elements of the ring. In a later variant studied by Anderson & Livingston (1999), the vertices represent only the zero divisors of the given ring.
It is a complete bipartite graph
K
p
−
1
,
q
−
1
{\displaystyle K_{p-1,q-1}}
in the case that
n
=
p
q
{\displaystyle n=pq}
for two distinct prime numbers
p
{\displaystyle p}
and
q
{\displaystyle q}
. The two sides of the bipartition are the
p
−
1
{\displaystyle p-1}
nonzero multiples of
q
{\displaystyle q}
and the
q
−
1
{\displaystyle q-1}
nonzero multiples of
p
{\displaystyle p}
, respectively. Two numbers (that are not themselves zero modulo
n
{\displaystyle n}
) multiply to zero modulo
n
{\displaystyle n}
if and only if one is a multiple of
p
{\displaystyle p}
and the other is a multiple of
q
{\displaystyle q}
, so this graph has an edge between each pair of vertices on opposite sides of the bipartition, and no other edges. More generally, the zero-divisor graph is a complete bipartite graph for any ring that is a product of two integral domains.
The zero-divisor graph of a ring that is not an integral domain is finite if and only if the ring is finite. More concretely, if the graph has maximum degree
d
{\displaystyle d}
, the ring has at most
(
d
2
−
2
d
+
2
)
2
{\displaystyle (d^{2}-2d+2)^{2}}
elements.
If the ring and the graph are infinite, every edge has an endpoint with infinitely many neighbors.
Anderson, David F.; Axtell, Michael C.; Stickles, Joe A. Jr. (2011), "Zero-divisor graphs in commutative rings", Commutative algebra—Noetherian and non-Noetherian perspectives, Springer, New York, pp. 23–45, doi:10.1007/978-1-4419-6990-3_2, MR 2762487 /wiki/Doi_(identifier)
Beck, István (1988), "Coloring of commutative rings", Journal of Algebra, 116 (1): 208–226, doi:10.1016/0021-8693(88)90202-5, MR 0944156 /wiki/Doi_(identifier)
Anderson, David F.; Livingston, Philip S. (1999), "The zero-divisor graph of a commutative ring", Journal of Algebra, 217 (2): 434–447, doi:10.1006/jabr.1998.7840, MR 1700509 /wiki/Doi_(identifier)
Anderson, David F.; Livingston, Philip S. (1999), "The zero-divisor graph of a commutative ring", Journal of Algebra, 217 (2): 434–447, doi:10.1006/jabr.1998.7840, MR 1700509 /wiki/Doi_(identifier)
Anderson, David F.; Livingston, Philip S. (1999), "The zero-divisor graph of a commutative ring", Journal of Algebra, 217 (2): 434–447, doi:10.1006/jabr.1998.7840, MR 1700509 /wiki/Doi_(identifier)
Anderson, David F.; Livingston, Philip S. (1999), "The zero-divisor graph of a commutative ring", Journal of Algebra, 217 (2): 434–447, doi:10.1006/jabr.1998.7840, MR 1700509 /wiki/Doi_(identifier)
Anderson, David F.; Axtell, Michael C.; Stickles, Joe A. Jr. (2011), "Zero-divisor graphs in commutative rings", Commutative algebra—Noetherian and non-Noetherian perspectives, Springer, New York, pp. 23–45, doi:10.1007/978-1-4419-6990-3_2, MR 2762487 /wiki/Doi_(identifier)
Anderson, David F.; Livingston, Philip S. (1999), "The zero-divisor graph of a commutative ring", Journal of Algebra, 217 (2): 434–447, doi:10.1006/jabr.1998.7840, MR 1700509 /wiki/Doi_(identifier)
Anderson, David F.; Livingston, Philip S. (1999), "The zero-divisor graph of a commutative ring", Journal of Algebra, 217 (2): 434–447, doi:10.1006/jabr.1998.7840, MR 1700509 /wiki/Doi_(identifier)
Mulay, S. B. (2002), "Cycles and symmetries of zero-divisors", Communications in Algebra, 30 (7): 3533–3558, doi:10.1081/AGB-120004502, MR 1915011 /wiki/Doi_(identifier)
DeMeyer, Frank; Schneider, Kim (2002), "Automorphisms and zero divisor graphs of commutative rings", Commutative rings, Hauppauge, NY: Nova Science, pp. 25–37, MR 2037656 /wiki/MR_(identifier)
Anderson, David F.; Livingston, Philip S. (1999), "The zero-divisor graph of a commutative ring", Journal of Algebra, 217 (2): 434–447, doi:10.1006/jabr.1998.7840, MR 1700509 /wiki/Doi_(identifier)
Anderson, David F.; Axtell, Michael C.; Stickles, Joe A. Jr. (2011), "Zero-divisor graphs in commutative rings", Commutative algebra—Noetherian and non-Noetherian perspectives, Springer, New York, pp. 23–45, doi:10.1007/978-1-4419-6990-3_2, MR 2762487 /wiki/Doi_(identifier)
Anderson, D. D.; Naseer, M. (1993), "Beck's coloring of a commutative ring", Journal of Algebra, 159 (2): 500–514, doi:10.1006/jabr.1993.1171, MR 1231228 /wiki/Doi_(identifier)