Protactinium-230 is of interest as a progenitor of uranium-230, an isotope that has been considered for use in targeted alpha-particle therapy (TAT). It can be produced through proton or deuteron irradiation of natural thorium.
Protactinium-231 is the longest-lived isotope of protactinium, with a half-life of 32,760 years. In nature, it is found in trace amounts as part of the actinium series, which starts with the primordial isotope uranium-235; the equilibrium concentration in uranium ore is 46.55 231Pa per million 235U. In nuclear reactors, it is one of the few long-lived radioactive actinides produced as a byproduct of the projected thorium fuel cycle, as a result of (n,2n) reactions where a fast neutron removes a neutron from 232Th or 232U, and can also be destroyed by neutron capture, though the cross section for this reaction is also low.
Protactinium-233 is also part of the thorium fuel cycle. It is an intermediate beta decay product between thorium-233 (produced from natural thorium-232 by neutron capture) and uranium-233 (the fissile fuel of the thorium cycle). Some thorium-cycle reactor designs try to protect Pa-233 from further neutron capture producing Pa-234 and U-234, which are not useful as fuel.
Protactinium-234m is a member of the uranium series with a half-life of 1.17 minutes. It was discovered in 1913 by Kazimierz Fajans and Oswald Helmuth Göhring, who named it brevium for its short half-life. About 99.8% of decays of 234Th produce this isomer instead of the ground state (t1/2 = 6.70 hours).
mPa – Excited nuclear isomer. /wiki/Nuclear_isomer
Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf. /wiki/Doi_(identifier)
( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
# – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf
# – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf
Modes of decay:
EC:Electron captureCD:Cluster decayIT:Isomeric transitionSF:Spontaneous fission /wiki/Electron_capture
Bold italics symbol as daughter – Daughter product is nearly stable.
Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf
( ) spin value – Indicates spin with weak assignment arguments.
# – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
Zhang, M. M.; Wang, J. G.; Ma, L.; Gan, Z. G.; Zhang, Z. Y.; Huang, M. H.; Yang, H. B.; Yang, C. L.; Andreyev, A. N.; Yuan, C. X.; Tian, Y. L.; Wang, Y. S.; Wang, J. Y.; Qiang, Y. H.; Wu, X. L.; Xu, S. Y.; Zhao, Z.; Huang, X. Y.; Li, Z. C.; Zhou, H.; Zhang, X.; Xie, G.; Zhu, L.; Guan, F.; Zheng, J. H.; Sun, L. C.; Li, Y. J.; Yang, H. R.; Duan, L. M.; Lu, Z. W.; Huang, W. X.; Sun, L. T.; He, Y.; Xu, H. S.; Niu, Y. F.; He, X. T.; Ren, Z. Z.; Zhou, S. G. (29 May 2025). "Discovery of the α-emitting isotope 210Pa". Nature Communications. 16 (1): 5003. doi:10.1038/s41467-025-60047-2. ISSN 2041-1723. Retrieved 1 June 2025. https://www.nature.com/articles/s41467-025-60047-2
Order of ground state and isomer is uncertain.
Intermediate decay product of 235U /wiki/Decay_product
Intermediate decay product of 237Np /wiki/Neptunium-237
Intermediate decay product of 238U /wiki/Uranium-238
Intermediate decay product of 238U /wiki/Uranium-238
Audi, G.; Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S. (2017). "The NUBASE2016 evaluation of nuclear properties" (PDF). Chinese Physics C. 41 (3): 030001. Bibcode:2017ChPhC..41c0001A. doi:10.1088/1674-1137/41/3/030001.
https://www-nds.iaea.org/amdc/ame2016/NUBASE2016.pdf
Mastren, T.; Stein, B.W.; Parker, T.G.; Radchenko, V.; Copping, R.; Owens, A.; Wyant, L.E.; Brugh, M.; Kozimor, S.A.; Noriter, F.M.; Birnbaum, E.R.; John, K.D.; Fassbender, M.E. (2018). "Separation of protactinium employing sulfur-based extraction chromatographic resins". Analytical Chemistry. 90 (11): 7012–7017. doi:10.1021/acs.analchem.8b01380. ISSN 0003-2700. OSTI 1440455. PMID 29757620. https://www.researchgate.net/publication/325135604
Fry, C., and M. Thoennessen. "Discovery of the Actinium, Thorium, Protactinium, and Uranium Isotopes." January 14, 2012. Accessed May 20, 2018. https://people.nscl.msu.edu/~thoennes/2009/ac-th-pa-u-adndt.pdf. https://people.nscl.msu.edu/~thoennes/2009/ac-th-pa-u-adndt.pdf
"Human Health Fact Sheet - Protactinium" (PDF). Argonne National Laboratory (ANL). November 2001. Retrieved 17 October 2023. http://hpschapters.org/northcarolina/NSDS/Protactinium.pdf
"Human Health Fact Sheet - Protactinium" (PDF). Argonne National Laboratory (ANL). November 2001. Retrieved 17 October 2023. http://hpschapters.org/northcarolina/NSDS/Protactinium.pdf