During breeding season, the males develop ridge-like nuptial pads (black in color) on their fingers to aid in grasping the female. The frogs' mating embrace is inguinal, meaning the male grasps the female around her waist.
In recent years, these approaches have played in important role in studies of human disease genes. The mechanism of action for several genes mutated in human cystic kidney disorders (e.g. nephronophthisis) have been extensively studied in Xenopus embryos, shedding new light on the link between these disorders, ciliogenesis and Wnt signaling. Xenopus embryos have also provided a rapid test bed for validating newly discovered disease genes. For example, studies in Xenopus confirmed and elucidated the role of PYCR1 in cutis laxa with progeroid features.
The expression of genes can be reduced by a variety of means, for example by using antisense oligonucleotides targeting specific mRNA molecules. DNA oligonucleotides complementary to specific mRNA molecules are often chemically modified to improve their stability in vivo. The chemical modifications used for this purpose include phosphorothioate, 2'-O-methyl, morpholino, MEA phosphoramidate and DEED phosphoramidate.
Morpholino oligos (MOs) are short, antisense oligos made of modified nucleotides. MOs can knock down gene expression by inhibiting mRNA translation, blocking RNA splicing, or inhibiting miRNA activity and maturation. MOs have proven to be effective knockdown tools in developmental biology experiments and RNA-blocking reagents for cells in culture. MOs do not degrade their RNA targets, but instead act via a steric blocking mechanism RNAseH-independent manner. They remain stable in cells and do not induce immune responses. Microinjection of MOs in early Xenopus embryos can suppress gene expression in a targeted manner.
Like all antisense approaches, different MOs can have different efficacy, and may cause off-target, non-specific effects. Often, several MOs need to be tested to find an effective target sequence. Rigorous controls are used to demonstrate specificity, including:
"Xenopus". Lexico UK English Dictionary. Oxford University Press. Archived from the original on 2020-03-22.
https://web.archive.org/web/20200322182228/https://www.lexico.com/definition/xenopus
"Xenopus". Merriam-Webster.com Dictionary. Merriam-Webster. Retrieved 2016-01-21. https://www.merriam-webster.com/dictionary/Xenopus
Nenni MJ, Fisher ME, James-Zorn C, Pells TJ, Ponferrada V, Chu S, et al. (2019). "Xenbase: Facilitating the Use of Xenopus to Model Human Disease". Frontiers in Physiology. 10: 154. doi:10.3389/fphys.2019.00154. PMC 6399412. PMID 30863320. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6399412
Wallingford JB, Liu KJ, Zheng Y (March 2010). "Xenopus". Current Biology. 20 (6): R263 – R264. Bibcode:2010CBio...20.R263W. doi:10.1016/j.cub.2010.01.012. PMID 20334828. https://doi.org/10.1016%2Fj.cub.2010.01.012
Harland RM, Grainger RM (December 2011). "Xenopus research: metamorphosed by genetics and genomics". Trends in Genetics. 27 (12): 507–515. doi:10.1016/j.tig.2011.08.003. PMC 3601910. PMID 21963197. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3601910
"IACUC Learning Module — Xenopus laevis". University of Arizona. Archived from the original on 2010-06-26. Retrieved 2009-10-11. https://web.archive.org/web/20100626190703/http://www.iacuc.arizona.edu/training/xenopus/intro.html
"IACUC Learning Module — Xenopus laevis". University of Arizona. Archived from the original on 2010-06-26. Retrieved 2009-10-11. https://web.archive.org/web/20100626190703/http://www.iacuc.arizona.edu/training/xenopus/intro.html
Roots C (2006). Nocturnal animals. Greenwood Press. p. 19. ISBN 978-0-313-33546-4. 978-0-313-33546-4
Passmore NI, Carruthers VC (1979). South African Frogs. Johannesburg: Witwatersrand University Press. pp. 42–43. ISBN 0-85494-525-3. 0-85494-525-3
Passmore NI, Carruthers VC (1979). South African Frogs. Johannesburg: Witwatersrand University Press. pp. 42–43. ISBN 0-85494-525-3. 0-85494-525-3
Passmore NI, Carruthers VC (1979). South African Frogs. Johannesburg: Witwatersrand University Press. pp. 42–43. ISBN 0-85494-525-3. 0-85494-525-3
Roots C (2006). Nocturnal animals. Greenwood Press. p. 19. ISBN 978-0-313-33546-4. 978-0-313-33546-4
Tobias ML, Corke A, Korsh J, Yin D, Kelley DB (November 2010). "Vocal competition in male Xenopus laevis frogs". Behavioral Ecology and Sociobiology. 64 (11): 1791–1803. doi:10.1007/s00265-010-0991-3. PMC 3064475. PMID 21442049. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3064475
Tobias ML, Viswanathan SS, Kelley DB (February 1998). "Rapping, a female receptive call, initiates male-female duets in the South African clawed frog". Proceedings of the National Academy of Sciences of the United States of America. 95 (4): 1870–1875. Bibcode:1998PNAS...95.1870T. doi:10.1073/pnas.95.4.1870. PMC 19205. PMID 9465109. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC19205
Passmore NI, Carruthers VC (1979). South African Frogs. Johannesburg: Witwatersrand University Press. pp. 42–43. ISBN 0-85494-525-3. 0-85494-525-3
Passmore NI, Carruthers VC (1979). South African Frogs. Johannesburg: Witwatersrand University Press. pp. 42–43. ISBN 0-85494-525-3. 0-85494-525-3
[ Xenopus] at Fossilworks.org /wiki/Fossilworks
"IACUC Learning Module — Xenopus laevis". University of Arizona. Archived from the original on 2010-06-26. Retrieved 2009-10-11. https://web.archive.org/web/20100626190703/http://www.iacuc.arizona.edu/training/xenopus/intro.html
Wallingford JB, Liu KJ, Zheng Y (March 2010). "Xenopus". Current Biology. 20 (6): R263 – R264. Bibcode:2010CBio...20.R263W. doi:10.1016/j.cub.2010.01.012. PMID 20334828. https://doi.org/10.1016%2Fj.cub.2010.01.012
Harland RM, Grainger RM (December 2011). "Xenopus research: metamorphosed by genetics and genomics". Trends in Genetics. 27 (12): 507–515. doi:10.1016/j.tig.2011.08.003. PMC 3601910. PMID 21963197. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3601910
Wallingford JB, Liu KJ, Zheng Y (March 2010). "Xenopus". Current Biology. 20 (6): R263 – R264. Bibcode:2010CBio...20.R263W. doi:10.1016/j.cub.2010.01.012. PMID 20334828. https://doi.org/10.1016%2Fj.cub.2010.01.012
Harland RM, Grainger RM (December 2011). "Xenopus research: metamorphosed by genetics and genomics". Trends in Genetics. 27 (12): 507–515. doi:10.1016/j.tig.2011.08.003. PMC 3601910. PMID 21963197. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3601910
Harland RM, Grainger RM (December 2011). "Xenopus research: metamorphosed by genetics and genomics". Trends in Genetics. 27 (12): 507–515. doi:10.1016/j.tig.2011.08.003. PMC 3601910. PMID 21963197. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3601910
Wallingford JB, Liu KJ, Zheng Y (March 2010). "Xenopus". Current Biology. 20 (6): R263 – R264. Bibcode:2010CBio...20.R263W. doi:10.1016/j.cub.2010.01.012. PMID 20334828. https://doi.org/10.1016%2Fj.cub.2010.01.012
Session AM, Uno Y, Kwon T, Chapman JA, Toyoda A, Takahashi S, et al. (October 2016). "Genome evolution in the allotetraploid frog Xenopus laevis". Nature. 538 (7625): 336–343. Bibcode:2016Natur.538..336S. doi:10.1038/nature19840. PMC 5313049. PMID 27762356. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5313049
Schmid M, Evans BJ, Bogart JP (2015). "Polyploidy in Amphibia". Cytogenetic and Genome Research. 145 (3–4): 315–330. doi:10.1159/000431388. PMID 26112701. https://doi.org/10.1159%2F000431388
Hogben L, Charles E, Slome D (1931). "Studies on the pituitary. 8. The relation of the pituitary gland to calcium metabolism and ovarian function in Xenopus". Journal of Experimental Biology. 8: 345–54. doi:10.1242/jeb.8.4.345. http://jeb.biologists.org/content/8/4/345
Elkan ER (December 1938). "The Xenopus Pregnancy Test". British Medical Journal. 2 (4067): 1253–1274.2. doi:10.1136/bmj.2.4067.1253. PMC 2211252. PMID 20781969. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2211252
Diagnosis of Pregnancy, Louis P. Bosman, British Medical Journal 1937;2:939, 6 November 1937 https://www.bmj.com/content/2/4009/939.1%7CEarly
Nuwer R (16 May 2013). "Doctors Used to Use Live African Frogs As Pregnancy Tests". Smithsonian.com. Retrieved 30 October 2018. /wiki/Rachel_Nuwer
"The National Xenopus Resource". Marine Biological Laboratory. Retrieved 2022-04-05. https://www.mbl.edu/research/resources-research-facilities/national-xenopus-resource
Karimi K, Fortriede JD, Lotay VS, Burns KA, Wang DZ, Fisher ME, et al. (January 2018). "Xenbase: a genomic, epigenomic and transcriptomic model organism database". Nucleic Acids Research. 46 (D1): D861 – D868. doi:10.1093/nar/gkx936. PMC 5753396. PMID 29059324. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5753396
"Xenopus model organism database". Xenbase.org. http://www.xenbase.org
Hardwick LJ, Philpott A (December 2015). "An oncologist׳s friend: How Xenopus contributes to cancer research". Developmental Biology. Modeling Human Development and Disease in Xenopus. 408 (2): 180–187. doi:10.1016/j.ydbio.2015.02.003. PMC 4684227. PMID 25704511. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4684227
Gurdon JB, Lane CD, Woodland HR, Marbaix G (September 1971). "Use of frog eggs and oocytes for the study of messenger RNA and its translation in living cells". Nature. 233 (5316): 177–182. Bibcode:1971Natur.233..177G. doi:10.1038/233177a0. PMID 4939175. S2CID 4160808. /wiki/Bibcode_(identifier)
Reynolds FH, Premkumar E, Pitha PM (December 1975). "Interferon activity produced by translation of human interferon messenger RNA in cell-free ribosomal systems and in Xenopus oöcytes". Proceedings of the National Academy of Sciences of the United States of America. 72 (12): 4881–4885. Bibcode:1975PNAS...72.4881R. doi:10.1073/pnas.72.12.4881. PMC 388836. PMID 1061077. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC388836
Heasman J, Kofron M, Wylie C (June 2000). "Beta-catenin signaling activity dissected in the early Xenopus embryo: a novel antisense approach". Developmental Biology. 222 (1): 124–134. doi:10.1006/dbio.2000.9720. PMID 10885751. https://doi.org/10.1006%2Fdbio.2000.9720
Schäfer T, Pütz M, Lienkamp S, Ganner A, Bergbreiter A, Ramachandran H, et al. (December 2008). "Genetic and physical interaction between the NPHP5 and NPHP6 gene products". Human Molecular Genetics. 17 (23): 3655–3662. doi:10.1093/hmg/ddn260. PMC 2802281. PMID 18723859. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2802281
Reversade B, Escande-Beillard N, Dimopoulou A, Fischer B, Chng SC, Li Y, et al. (September 2009). "Mutations in PYCR1 cause cutis laxa with progeroid features". Nature Genetics. 41 (9): 1016–1021. doi:10.1038/ng.413. PMID 19648921. S2CID 10221927. /wiki/Doi_(identifier)
Pittman AM, Naranjo S, Webb E, Broderick P, Lips EH, van Wezel T, et al. (June 2009). "The colorectal cancer risk at 18q21 is caused by a novel variant altering SMAD7 expression". Genome Research. 19 (6): 987–993. doi:10.1101/gr.092668.109. PMC 2694486. PMID 19395656. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2694486
Joukov V, Groen AC, Prokhorova T, Gerson R, White E, Rodriguez A, et al. (November 2006). "The BRCA1/BARD1 heterodimer modulates ran-dependent mitotic spindle assembly". Cell. 127 (3): 539–552. doi:10.1016/j.cell.2006.08.053. PMID 17081976. S2CID 17769149. https://doi.org/10.1016%2Fj.cell.2006.08.053
You Z, Bailis JM, Johnson SA, Dilworth SM, Hunter T (November 2007). "Rapid activation of ATM on DNA flanking double-strand breaks". Nature Cell Biology. 9 (11): 1311–1318. doi:10.1038/ncb1651. PMID 17952060. S2CID 17389213. /wiki/Doi_(identifier)
Ben-Yehoyada M, Wang LC, Kozekov ID, Rizzo CJ, Gottesman ME, Gautier J (September 2009). "Checkpoint signaling from a single DNA interstrand crosslink". Molecular Cell. 35 (5): 704–715. doi:10.1016/j.molcel.2009.08.014. PMC 2756577. PMID 19748363. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2756577
Sobeck A, Stone S, Landais I, de Graaf B, Hoatlin ME (September 2009). "The Fanconi anemia protein FANCM is controlled by FANCD2 and the ATR/ATM pathways". The Journal of Biological Chemistry. 284 (38): 25560–25568. doi:10.1074/jbc.M109.007690. PMC 2757957. PMID 19633289. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2757957
Dominguez-Sola D, Ying CY, Grandori C, Ruggiero L, Chen B, Li M, et al. (July 2007). "Non-transcriptional control of DNA replication by c-Myc". Nature. 448 (7152): 445–451. Bibcode:2007Natur.448..445D. doi:10.1038/nature05953. PMID 17597761. S2CID 4422771. /wiki/Bibcode_(identifier)
Dean S, Marchetti R, Kirk K, Matthews KR (May 2009). "A surface transporter family conveys the trypanosome differentiation signal". Nature. 459 (7244): 213–217. Bibcode:2009Natur.459..213D. doi:10.1038/nature07997. PMC 2685892. PMID 19444208. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2685892
Bockenhauer D, Feather S, Stanescu HC, Bandulik S, Zdebik AA, Reichold M, et al. (May 2009). "Epilepsy, ataxia, sensorineural deafness, tubulopathy, and KCNJ10 mutations". The New England Journal of Medicine. 360 (19): 1960–1970. doi:10.1056/NEJMoa0810276. PMC 3398803. PMID 19420365. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3398803
Gustina AS, Trudeau MC (August 2009). "A recombinant N-terminal domain fully restores deactivation gating in N-truncated and long QT syndrome mutant hERG potassium channels". Proceedings of the National Academy of Sciences of the United States of America. 106 (31): 13082–13087. Bibcode:2009PNAS..10613082G. doi:10.1073/pnas.0900180106. PMC 2722319. PMID 19651618. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2722319
Duarri A, Teijido O, López-Hernández T, Scheper GC, Barriere H, Boor I, et al. (December 2008). "Molecular pathogenesis of megalencephalic leukoencephalopathy with subcortical cysts: mutations in MLC1 cause folding defects". Human Molecular Genetics. 17 (23): 3728–3739. doi:10.1093/hmg/ddn269. PMC 2581428. PMID 18757878. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2581428
Blitz IL, Biesinger J, Xie X, Cho KW (December 2013). "Biallelic genome modification in F(0) Xenopus tropicalis embryos using the CRISPR/Cas system". Genesis. 51 (12): 827–834. doi:10.1002/dvg.22719. PMC 4039559. PMID 24123579. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4039559
Nakayama T, Fish MB, Fisher M, Oomen-Hajagos J, Thomsen GH, Grainger RM (December 2013). "Simple and efficient CRISPR/Cas9-mediated targeted mutagenesis in Xenopus tropicalis". Genesis. 51 (12): 835–843. doi:10.1002/dvg.22720. PMC 3947545. PMID 24123613. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3947545
Wang F, Shi Z, Cui Y, Guo X, Shi YB, Chen Y (2015-04-14). "Targeted gene disruption in Xenopus laevis using CRISPR/Cas9". Cell & Bioscience. 5 (1): 15. doi:10.1186/s13578-015-0006-1. PMC 4403895. PMID 25897376. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4403895
Bhattacharya D, Marfo CA, Li D, Lane M, Khokha MK (December 2015). "CRISPR/Cas9: An inexpensive, efficient loss of function tool to screen human disease genes in Xenopus". Developmental Biology. Modeling Human Development and Disease in Xenopus. 408 (2): 196–204. doi:10.1016/j.ydbio.2015.11.003. PMC 4684459. PMID 26546975. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4684459
Dupont S, Mamidi A, Cordenonsi M, Montagner M, Zacchigna L, Adorno M, et al. (January 2009). "FAM/USP9x, a deubiquitinating enzyme essential for TGFbeta signaling, controls Smad4 monoubiquitination". Cell. 136 (1): 123–135. doi:10.1016/j.cell.2008.10.051. PMID 19135894. S2CID 16458957. https://doi.org/10.1016%2Fj.cell.2008.10.051
Cordenonsi M, Montagner M, Adorno M, Zacchigna L, Martello G, Mamidi A, et al. (February 2007). "Integration of TGF-beta and Ras/MAPK signaling through p53 phosphorylation". Science. 315 (5813): 840–843. Bibcode:2007Sci...315..840C. doi:10.1126/science.1135961. PMID 17234915. S2CID 83962686. https://doi.org/10.1126%2Fscience.1135961
Fuentealba LC, Eivers E, Ikeda A, Hurtado C, Kuroda H, Pera EM, De Robertis EM (November 2007). "Integrating patterning signals: Wnt/GSK3 regulates the duration of the BMP/Smad1 signal". Cell. 131 (5): 980–993. doi:10.1016/j.cell.2007.09.027. PMC 2200633. PMID 18045539. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2200633
Kim NG, Xu C, Gumbiner BM (March 2009). "Identification of targets of the Wnt pathway destruction complex in addition to beta-catenin". Proceedings of the National Academy of Sciences of the United States of America. 106 (13): 5165–5170. Bibcode:2009PNAS..106.5165K. doi:10.1073/pnas.0810185106. PMC 2663984. PMID 19289839. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2663984
Kaláb P, Pralle A, Isacoff EY, Heald R, Weis K (March 2006). "Analysis of a RanGTP-regulated gradient in mitotic somatic cells". Nature. 440 (7084): 697–701. Bibcode:2006Natur.440..697K. doi:10.1038/nature04589. PMID 16572176. S2CID 4398374. /wiki/Bibcode_(identifier)
Tsai MY, Wang S, Heidinger JM, Shumaker DK, Adam SA, Goldman RD, Zheng Y (March 2006). "A mitotic lamin B matrix induced by RanGTP required for spindle assembly". Science. 311 (5769): 1887–1893. Bibcode:2006Sci...311.1887T. doi:10.1126/science.1122771. PMID 16543417. S2CID 12219529. /wiki/Bibcode_(identifier)
Ma L, Tsai MY, Wang S, Lu B, Chen R, Yates JR, et al. (March 2009). "Requirement for Nudel and dynein for assembly of the lamin B spindle matrix". Nature Cell Biology. 11 (3): 247–256. doi:10.1038/ncb1832. PMC 2699591. PMID 19198602. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2699591
Emanuele MJ, Stukenberg PT (September 2007). "Xenopus Cep57 is a novel kinetochore component involved in microtubule attachment". Cell. 130 (5): 893–905. doi:10.1016/j.cell.2007.07.023. PMID 17803911. S2CID 17520550. https://doi.org/10.1016%2Fj.cell.2007.07.023
Noireaux V, Liu AP (June 2020). "The New Age of Cell-Free Biology". Annual Review of Biomedical Engineering. 22 (1). Annual Reviews: 51–77. doi:10.1146/annurev-bioeng-092019-111110. PMID 32151150. S2CID 212652742. https://doi.org/10.1146%2Fannurev-bioeng-092019-111110
Akkers RC, van Heeringen SJ, Jacobi UG, Janssen-Megens EM, Françoijs KJ, Stunnenberg HG, Veenstra GJ (September 2009). "A hierarchy of H3K4me3 and H3K27me3 acquisition in spatial gene regulation in Xenopus embryos". Developmental Cell. 17 (3): 425–434. doi:10.1016/j.devcel.2009.08.005. PMC 2746918. PMID 19758566. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2746918
Hontelez S, van Kruijsbergen I, Georgiou G, van Heeringen SJ, Bogdanovic O, Lister R, Veenstra GJ (December 2015). "Embryonic transcription is controlled by maternally defined chromatin state". Nature Communications. 6: 10148. Bibcode:2015NatCo...610148H. doi:10.1038/ncomms10148. PMC 4703837. PMID 26679111. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4703837
Walker JC, Harland RM (May 2009). "microRNA-24a is required to repress apoptosis in the developing neural retina". Genes & Development. 23 (9): 1046–1051. doi:10.1101/gad.1777709. PMC 2682950. PMID 19372388. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2682950
Rosa A, Spagnoli FM, Brivanlou AH (April 2009). "The miR-430/427/302 family controls mesendodermal fate specification via species-specific target selection". Developmental Cell. 16 (4): 517–527. doi:10.1016/j.devcel.2009.02.007. PMID 19386261. https://doi.org/10.1016%2Fj.devcel.2009.02.007
Park JI, Venteicher AS, Hong JY, Choi J, Jun S, Shkreli M, et al. (July 2009). "Telomerase modulates Wnt signalling by association with target gene chromatin". Nature. 460 (7251): 66–72. Bibcode:2009Natur.460...66P. doi:10.1038/nature08137. PMC 4349391. PMID 19571879. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4349391
De Val S, Chi NC, Meadows SM, Minovitsky S, Anderson JP, Harris IS, et al. (December 2008). "Combinatorial regulation of endothelial gene expression by ets and forkhead transcription factors". Cell. 135 (6): 1053–1064. doi:10.1016/j.cell.2008.10.049. PMC 2782666. PMID 19070576. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2782666
Li Y, Rankin SA, Sinner D, Kenny AP, Krieg PA, Zorn AM (November 2008). "Sfrp5 coordinates foregut specification and morphogenesis by antagonizing both canonical and noncanonical Wnt11 signaling". Genes & Development. 22 (21): 3050–3063. doi:10.1101/gad.1687308. PMC 2577796. PMID 18981481. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2577796
Carmona-Fontaine C, Matthews HK, Kuriyama S, Moreno M, Dunn GA, Parsons M, et al. (December 2008). "Contact inhibition of locomotion in vivo controls neural crest directional migration". Nature. 456 (7224): 957–961. Bibcode:2008Natur.456..957C. doi:10.1038/nature07441. PMC 2635562. PMID 19078960. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2635562
Buitrago-Delgado E, Nordin K, Rao A, Geary L, LaBonne C (June 2015). "NEURODEVELOPMENT. Shared regulatory programs suggest retention of blastula-stage potential in neural crest cells". Science. 348 (6241): 1332–1335. doi:10.1126/science.aaa3655. PMC 4652794. PMID 25931449. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4652794
Gaiano N, Fishell G (2002). "The role of notch in promoting glial and neural stem cell fates". Annual Review of Neuroscience. 25 (1). Annual Reviews: 471–490. doi:10.1146/annurev.neuro.25.030702.130823. PMID 12052917. S2CID 15691580. /wiki/Annual_Reviews_(publisher)
Tsuji T, Lau E, Chiang GG, Jiang W (December 2008). "The role of Dbf4/Drf1-dependent kinase Cdc7 in DNA-damage checkpoint control". Molecular Cell. 32 (6): 862–869. doi:10.1016/j.molcel.2008.12.005. PMC 4556649. PMID 19111665. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4556649
Xu X, Rochette PJ, Feyissa EA, Su TV, Liu Y (October 2009). "MCM10 mediates RECQ4 association with MCM2-7 helicase complex during DNA replication". The EMBO Journal. 28 (19): 3005–3014. doi:10.1038/emboj.2009.235. PMC 2760112. PMID 19696745. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2760112
Ben-Yehoyada M, Wang LC, Kozekov ID, Rizzo CJ, Gottesman ME, Gautier J (September 2009). "Checkpoint signaling from a single DNA interstrand crosslink". Molecular Cell. 35 (5): 704–715. doi:10.1016/j.molcel.2009.08.014. PMC 2756577. PMID 19748363. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2756577
Räschle M, Knipscheer P, Knipsheer P, Enoiu M, Angelov T, Sun J, et al. (September 2008). "Mechanism of replication-coupled DNA interstrand crosslink repair". Cell. 134 (6): 969–980. doi:10.1016/j.cell.2008.08.030. PMC 2748255. PMID 18805090. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2748255
MacDougall CA, Byun TS, Van C, Yee MC, Cimprich KA (April 2007). "The structural determinants of checkpoint activation". Genes & Development. 21 (8): 898–903. doi:10.1101/gad.1522607. PMC 1847708. PMID 17437996. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1847708
Nutt LK, Buchakjian MR, Gan E, Darbandi R, Yoon SY, Wu JQ, et al. (June 2009). "Metabolic control of oocyte apoptosis mediated by 14-3-3zeta-regulated dephosphorylation of caspase-2". Developmental Cell. 16 (6): 856–866. doi:10.1016/j.devcel.2009.04.005. PMC 2698816. PMID 19531356. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2698816
Viczian AS, Solessio EC, Lyou Y, Zuber ME (August 2009). "Generation of functional eyes from pluripotent cells". PLOS Biology. 7 (8): e1000174. doi:10.1371/journal.pbio.1000174. PMC 2716519. PMID 19688031. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2716519
Dzamba BJ, Jakab KR, Marsden M, Schwartz MA, DeSimone DW (March 2009). "Cadherin adhesion, tissue tension, and noncanonical Wnt signaling regulate fibronectin matrix organization". Developmental Cell. 16 (3): 421–432. doi:10.1016/j.devcel.2009.01.008. PMC 2682918. PMID 19289087. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2682918
Beattie MS, Bresnahan JC, Lopate G (October 1990). "Metamorphosis alters the response to spinal cord transection in Xenopus laevis frogs". Journal of Neurobiology. 21 (7): 1108–1122. doi:10.1002/neu.480210714. PMID 2258724. /wiki/Doi_(identifier)
Park TJ, Mitchell BJ, Abitua PB, Kintner C, Wallingford JB (July 2008). "Dishevelled controls apical docking and planar polarization of basal bodies in ciliated epithelial cells". Nature Genetics. 40 (7): 871–879. doi:10.1038/ng.104. PMC 2771675. PMID 18552847. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2771675
Mitchell B, Jacobs R, Li J, Chien S, Kintner C (May 2007). "A positive feedback mechanism governs the polarity and motion of motile cilia". Nature. 447 (7140): 97–101. Bibcode:2007Natur.447...97M. doi:10.1038/nature05771. PMID 17450123. S2CID 4415593. /wiki/Bibcode_(identifier)
Noireaux V, Liu AP (June 2020). "The New Age of Cell-Free Biology". Annual Review of Biomedical Engineering. 22 (1). Annual Reviews: 51–77. doi:10.1146/annurev-bioeng-092019-111110. PMID 32151150. S2CID 212652742. https://doi.org/10.1146%2Fannurev-bioeng-092019-111110
Kälin RE, Bänziger-Tobler NE, Detmar M, Brändli AW (July 2009). "An in vivo chemical library screen in Xenopus tadpoles reveals novel pathways involved in angiogenesis and lymphangiogenesis". Blood. 114 (5): 1110–1122. doi:10.1182/blood-2009-03-211771. PMC 2721788. PMID 19478043. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2721788
Ny A, Koch M, Vandevelde W, Schneider M, Fischer C, Diez-Juan A, et al. (September 2008). "Role of VEGF-D and VEGFR-3 in developmental lymphangiogenesis, a chemicogenetic study in Xenopus tadpoles". Blood. 112 (5): 1740–1749. doi:10.1182/blood-2007-08-106302. PMID 18474726. S2CID 14663578. https://doi.org/10.1182%2Fblood-2007-08-106302
Cha HJ, Byrom M, Mead PE, Ellington AD, Wallingford JB, Marcotte EM (2012-01-01). "Evolutionarily repurposed networks reveal the well-known antifungal drug thiabendazole to be a novel vascular disrupting agent". PLOS Biology. 10 (8): e1001379. doi:10.1371/journal.pbio.1001379. PMC 3423972. PMID 22927795. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3423972
Zimmer C (2012-08-21). "Gene Tests in Yeast Aid Work on Cancer". The New York Times. https://www.nytimes.com/2012/08/21/health/research/clues-to-fighting-cancer-are-found-in-the-genes-of-yeast.html
Fini JB, Le Mevel S, Turque N, Palmier K, Zalko D, Cravedi JP, Demeneix BA (August 2007). "An in vivo multiwell-based fluorescent screen for monitoring vertebrate thyroid hormone disruption". Environmental Science & Technology. 41 (16): 5908–5914. Bibcode:2007EnST...41.5908F. doi:10.1021/es0704129. PMID 17874805. /wiki/Bibcode_(identifier)
Dupré A, Boyer-Chatenet L, Sattler RM, Modi AP, Lee JH, Nicolette ML, Kopelovich L, Jasin M, Baer R, Paull TT, Gautier J (February 2008). "A forward chemical genetic screen reveals an inhibitor of the Mre11-Rad50-Nbs1 complex". Nature Chemical Biology. 4 (2): 119–25. doi:10.1038/nchembio.63. PMC 3065498. PMID 18176557. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3065498
Landais I, Sobeck A, Stone S, LaChapelle A, Hoatlin ME (February 2009). "A novel cell-free screen identifies a potent inhibitor of the Fanconi anemia pathway". International Journal of Cancer. 124 (4): 783–92. doi:10.1002/ijc.24039. PMID 19048618. S2CID 33589304. https://doi.org/10.1002%2Fijc.24039
Dagle JM, Weeks DL (December 2001). "Oligonucleotide-based strategies to reduce gene expression". Differentiation; Research in Biological Diversity. 69 (2–3): 75–82. doi:10.1046/j.1432-0436.2001.690201.x. PMID 11798068. /wiki/Doi_(identifier)
Dagle JM, Weeks DL (December 2001). "Oligonucleotide-based strategies to reduce gene expression". Differentiation; Research in Biological Diversity. 69 (2–3): 75–82. doi:10.1046/j.1432-0436.2001.690201.x. PMID 11798068. /wiki/Doi_(identifier)
Blum M, De Robertis EM, Wallingford JB, Niehrs C (October 2015). "Morpholinos: Antisense and Sensibility". Developmental Cell. 35 (2): 145–149. doi:10.1016/j.devcel.2015.09.017. PMID 26506304. https://doi.org/10.1016%2Fj.devcel.2015.09.017
Rana AA, Collart C, Gilchrist MJ, Smith JC (November 2006). "Defining synphenotype groups in Xenopus tropicalis by use of antisense morpholino oligonucleotides". PLOS Genetics. 2 (11): e193. doi:10.1371/journal.pgen.0020193. PMC 1636699. PMID 17112317."A Xenopus tropicalis antisense morpholino screen". Gurdon Institute. 4 March 2014. Archived from the original on 12 June 2018. Retrieved 17 January 2007. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1636699
Blum M, De Robertis EM, Wallingford JB, Niehrs C (October 2015). "Morpholinos: Antisense and Sensibility". Developmental Cell. 35 (2): 145–149. doi:10.1016/j.devcel.2015.09.017. PMID 26506304. https://doi.org/10.1016%2Fj.devcel.2015.09.017
Xenbase http://www.xenbase.org/reagents/morpholino.do