In 2015, researchers obtained evidence for superlubricity at microscales, supported by computational studies. The Mira supercomputer simulated up to 1.2 million atoms for dry environments and up to 10 million atoms for humid environments.
Friction is known to be a major consumer of energy; for instance in a detailed study it was found that it may lead to one third of the energy losses in new automobile engines. Superlubricious coatings could reduce this. Potential applications include computer hard drives, wind turbine gears, and mechanical rotating seals for microelectromechanical and nanoelectromechanical systems.
Müser, Martin H. (2015-01-01). "Theoretical Studies of Superlubricity". In Gnecco, Enrico; Meyer, Ernst (eds.). Fundamentals of Friction and Wear on the Nanoscale. NanoScience and Technology. Springer International Publishing. pp. 209–232. doi:10.1007/978-3-319-10560-4_11. ISBN 9783319105598. 9783319105598
Aubry, S (1983-05-10). "Exact models with a complete Devil's staircase". Journal of Physics C: Solid State Physics. 16 (13): 2497–2508. Bibcode:1983JPhC...16.2497A. doi:10.1088/0022-3719/16/13/012. ISSN 0022-3719. https://iopscience.iop.org/article/10.1088/0022-3719/16/13/012
Sharma, S. R.; Bergersen, B.; Joos, B. (1984-06-01). "Aubry transition in a finite modulated chain". Physical Review B. 29 (11): 6335–6340. Bibcode:1984PhRvB..29.6335S. doi:10.1103/PhysRevB.29.6335. ISSN 0163-1829. https://link.aps.org/doi/10.1103/PhysRevB.29.6335
Lançon, F (2002). "Aubry transition in a real material: Prediction for its existence in an incommensurate gold/gold interface". Europhysics Letters. 57 (1): 74–79. Bibcode:2002EL.....57...74L. doi:10.1209/epl/i2002-00543-x. ISSN 0295-5075. https://iopscience.iop.org/article/10.1209/epl/i2002-00543-x
Bylinskii, Alexei; Gangloff, Dorian; Counts, Ian; Vuletić, Vladan (July 2016). "Observation of Aubry-type transition in finite atom chains via friction". Nature Materials. 15 (7): 717–721. arXiv:1510.07585. Bibcode:2016NatMa..15..717B. doi:10.1038/nmat4601. ISSN 1476-1122. PMID 26998915. https://www.nature.com/articles/nmat4601
Brazda, T.; Silva, A.; Manini, N.; Vanossi, A.; Guerra, R.; Tosatti, E.; Bechinger, C. (2018-03-28). "Experimental Observation of the Aubry Transition in Two-Dimensional Colloidal Monolayers". Physical Review X. 8 (1): 011050. arXiv:1802.09075. Bibcode:2018PhRvX...8a1050B. doi:10.1103/PhysRevX.8.011050. ISSN 2160-3308. https://link.aps.org/doi/10.1103/PhysRevX.8.011050
Dienwiebel, Martin; Verhoeven, Gertjan S.; Pradeep, Namboodiri; Frenken, Joost W. M.; Heimberg, Jennifer A.; Zandbergen, Henny W. (2004-03-24). "Superlubricity of Graphite" (PDF). Physical Review Letters. 92 (12). American Physical Society (APS): 126101. Bibcode:2004PhRvL..92l6101D. doi:10.1103/physrevlett.92.126101. ISSN 0031-9007. PMID 15089689. http://www.physics.leidenuniv.nl/sections/cm/ip/group/PDF/Phys.rev.lett/2004/92(2004)12601.pdf
Liu, Ze; Yang, Jiarui; Grey, Francois; Liu, Jefferson Zhe; Liu, Yilun; Wang, Yibing; Yang, Yanlian; Cheng, Yao; Zheng, Quanshui (2012-05-15). "Observation of Microscale Superlubricity in Graphite". Physical Review Letters. 108 (20). American Physical Society (APS): 205503. arXiv:1104.3320. Bibcode:2012PhRvL.108t5503L. doi:10.1103/physrevlett.108.205503. ISSN 0031-9007. PMID 23003154. S2CID 119192523. /wiki/ArXiv_(identifier)
Cahangirov, S.; Ciraci, S.; Özçelik, V. Ongun (May 21, 2013). "Superlubricity through graphene multilayers between Ni(111) surfaces". Physical Review B. 87 (20): 205428. arXiv:1305.3136. Bibcode:2013PhRvB..87t5428C. doi:10.1103/PhysRevB.87.205428. hdl:11693/20960 – via APS. https://link.aps.org/doi/10.1103/PhysRevB.87.205428
Graphite super lube works at micron scale Philip Robinson, Chemistry World, 28 May 2012 [1] http://www.rsc.org/chemistryworld/2012/05/graphite-super-lube-works-micron-scale
Socoliuc, A.; Bennewitz, R.; Gnecco, E.; Meyer, E. (2004-04-01). "Transition from Stick-Slip to Continuous Sliding in Atomic Friction: Entering a New Regime of Ultralow Friction". Physical Review Letters. 92 (13). American Physical Society (APS): 134301. Bibcode:2004PhRvL..92m4301S. doi:10.1103/physrevlett.92.134301. ISSN 0031-9007. PMID 15089616. /wiki/Bibcode_(identifier)
Socoliuc, Anisoara; Gnecco, Enrico; Maier, Sabine; Pfeiffer, Oliver; Baratoff, Alexis; Bennewitz, Roland; Meyer, Ernst (2006-07-14). "Atomic-Scale Control of Friction by Actuation of Nanometer-Sized Contacts". Science. 313 (5784). American Association for the Advancement of Science (AAAS): 207–210. Bibcode:2006Sci...313..207S. doi:10.1126/science.1125874. ISSN 0036-8075. PMID 16840695. S2CID 43269213. /wiki/Bibcode_(identifier)
Akchurin, Aydar (6 April 2016). "Superlubricity by means of repulsive van der Waals forces - About Tribology". Tribonet. Retrieved 11 April 2025. http://www.tribonet.org/superlubricity-by-means-of-repulsive-van-der-waals-forces/
Akchurin, Aydar (18 March 2016). "Superlubricity between steel surfaces with glycerol/water mixture lubricant - About Tribology". Tribonet. Retrieved 11 April 2025. http://www.tribonet.org/superlubricity-between-steel-surfaces-using-glycerolwater-mixture/
Akchurin, Aydar (21 March 2016). "Brasenia schreberi mucilage - superlubric biological liquid - About Tribology". Tribonet. Retrieved 11 April 2025. http://www.tribonet.org/brasenia-schreberi-mucilage-superlubric-biological-liquid/
Popov, Valentin L. (2020). "Contacts With Negative Work of "Adhesion" and Superlubricity". Frontiers in Mechanical Engineering. 5. doi:10.3389/fmech.2019.00073. https://doi.org/10.3389%2Ffmech.2019.00073
Zhou, Yunong; Wang, Anle; Müser, Martin H. (2019). "How Thermal Fluctuations Affect Hard-Wall Repulsion and Thereby Hertzian Contact Mechanics" (PDF). Frontiers in Mechanical Engineering. 5. doi:10.3389/fmech.2019.00067. https://publikationen.sulb.uni-saarland.de/bitstream/20.500.11880/34415/1/fmech-05-00067.pdf
Berman, Diana; Deshmukh, Sanket A.; Sankaranarayanan, Subramanian K. R. S.; Erdemir, Ali; Sumant, Anirudha V. (2015-06-05). "Macroscale superlubricity enabled by graphene nanoscroll formation". Science. 348 (6239): 1118–1122. Bibcode:2015Sci...348.1118B. doi:10.1126/science.1262024. ISSN 0036-8075. PMID 25977372. https://doi.org/10.1126%2Fscience.1262024
Berman, Diana; Deshmukh, Sanket A.; Sankaranarayanan, Subramanian K. R. S.; Erdemir, Ali; Sumant, Anirudha V. (2015-06-05). "Macroscale superlubricity enabled by graphene nanoscroll formation". Science. 348 (6239): 1118–1122. Bibcode:2015Sci...348.1118B. doi:10.1126/science.1262024. ISSN 0036-8075. PMID 25977372. https://doi.org/10.1126%2Fscience.1262024
Holmberg, Kenneth; Andersson, Peter; Erdemir, Ali (2012). "Global energy consumption due to friction in passenger cars". Tribology International. 47: 221–234. doi:10.1016/j.triboint.2011.11.022. ISSN 0301-679X. https://doi.org/10.1016/j.triboint.2011.11.022
"Superlubricity-near zero friction from nanodiamonds | Anirudha Sumant | TEDxNaperville". YouTube. 2018-11-30. Retrieved 2022-04-01. https://www.youtube.com/watch?v=ml1Rj6_W3eY