Chapel aims to improve the programmability of parallel computers in general and the Cascade system in particular, by providing a higher level of expression than current programming languages do and by improving the separation between algorithmic expression and data structure implementation details.
The language designers aspire for Chapel to bridge the gap between current high-performance computing (HPC) programming practitioners, who they describe as Fortran, C or C++ users writing procedural code using technologies like OpenMP and MPI on one side, and newly graduating computer programmers who tend to prefer Java, Python or Matlab with only some of them having experience with C++ or C. Chapel should offer the productivity advances offered by the latter suite of languages while not alienating the users of the first.4
Chapel supports a multithreaded parallel programming model at a high level by supporting abstractions for data parallelism, task parallelism, and nested parallelism. It enables optimizations for the locality of data and computation in the program via abstractions for data distribution and data-driven placement of subcomputations. It allows for code reuse and generality through object-oriented concepts and generic programming features. For instance, Chapel allows for the declaration of locales.5
While Chapel borrows concepts from many preceding languages, its parallel concepts are most closely based on ideas from High Performance Fortran (HPF), ZPL, and the Cray MTA's extensions to Fortran and C.
Lightfoot, David E. (2006). Modular programming languages: 7th Joint Modular Languages Conference. Springer. p. 20. ISBN 978-3-540-40927-4. 978-3-540-40927-4 ↩
"Chapel license information". chapel-lang.org. Retrieved November 15, 2015. http://chapel-lang.org/license.html ↩
"Chapel Technote: GPU Programming". Hewlett Packard Enterprise. 2023-09-28. Retrieved 2023-11-03. https://chapel-lang.org/docs/technotes/gpu.html ↩
Chamberlain, Bradford L. "A Brief Overview of Chapel" (PDF). Cray Inc. Retrieved 22 April 2015. http://chapel-lang.org/papers/BriefOverviewChapel.pdf ↩
Bongen Gu; Wikuan Yu; Yoonsik Kwak (June 28–30, 2011). "Communication and Computation Overlap through Task Synchronization in Multi-locale Chapel Environment". In James J. Park, Laurence T. Yang and Changhoon Lee (ed.). Future Information Technology, Part I: 6th International Conference. Loutraki, Greece: Springer-Verlag. pp. 285–292. doi:10.1007/978-3-642-22333-4_37. ISBN 978-3-642-22332-7. 978-3-642-22332-7 ↩