There are exceptions to the two-hit rule for tumor suppressors, such as certain mutations in the p53 gene product. p53 mutations can function as a dominant negative, meaning that a mutated p53 protein can prevent the function of the natural protein produced from the non-mutated allele. Other tumor-suppressor genes that do not follow the two-hit rule are those that exhibit haploinsufficiency, including PTCH in medulloblastoma and NF1 in neurofibroma. Another example is p27, a cell-cycle inhibitor, that when one allele is mutated causes increased carcinogen susceptibility.
Expression of genes, including tumor suppressors, can be altered through biochemical alterations known as DNA methylation. Methylation is an example of epigenetic modifications, which commonly regulate expression in mammalian genes. The addition of a methyl group to either histone tails or directly on DNA causes the nucleosome to pack tightly together restricting the transcription of any genes in this region. This process not only has the capabilities to inhibit gene expression, it can also increase the chance of mutations. Stephen Baylin observed that if promoter regions experience a phenomenon known as hypermethylation, it could result in later transcriptional errors, tumor suppressor gene silencing, protein misfolding, and eventually cancer growth. Baylin et al. found methylation inhibitors known as azacitidine and decitabine. These compounds can actually help prevent cancer growth by inducing re-expression of previously silenced genes, arresting the cell cycle of the tumor cell and forcing it into apoptosis.
There are further clinical trials under current investigation regarding treatments for hypermethylation as well as alternate tumor suppression therapies that include prevention of tissue hyperplasia, tumor development, or metastatic spread of tumors. The team working with Wajed have investigated neoplastic tissue methylation in order to one day identify early treatment options for gene modification that can silence the tumor suppressor gene. In addition to DNA methylation, other epigenetic modifications like histone deacetylation or chromatin-binding proteins can prevent DNA polymerase from effectively transcribing desired sequences, such as ones containing tumor suppressor genes.
The non-viral method of transferring genetic material is used less often than the viral method. However, the non-viral method is a more cost-effective, safer, available method of gene delivery not to mention that non-viral methods have shown to induce fewer host immune responses and possess no restrictions on size or length of the transferable genetic material. Non-viral gene therapy uses either chemical or physical methods to introduce genetic material to the desired cells. The chemical methods are used primarily for tumor suppressor gene introduction and are divided into two categories which are naked plasmid or liposome-coated plasmids. The naked plasmid strategy has garnered interest because of its easy to use methods. Direct injection into the muscles allows for the plasmid to be taken up into the cell of possible tumors where the genetic material of the plasmid can be incorporated into the genetic material of the tumor cells and revert any previous damage done to tumor suppressor genes. The liposome-coated plasmid method has recently also been of interest since they produce relatively low host immune response and are efficient with cellular targeting. The positively charged capsule in which the genetic material is packaged helps with electrostatic attraction to the negatively charged membranes of the cells as well as the negatively charged DNA of the tumor cells. In this way, non-viral methods of gene therapy are highly effective in restoring tumor suppressor gene function to tumor cells that have either partially or entirely lost this function.
The viral and non-viral gene therapies mentioned above are commonly used but each has some limitations which must be considered. The most important limitation these methods have is the efficacy at which the adenoviral and adeno-associated vectors, naked plasmids, or liposome-coated plasmids are taken in by the host's tumor cells. If proper uptake by the host's tumor cells is not achieved, re-insertion introduces problems such as the host's immune system recognizing these vectors or plasmids and destroying them which impairs the overall effectiveness of the gene therapy treatment further.
As the cost of DNA sequencing continues to diminish, more cancers can be sequenced. This allows for the discovery of novel tumor suppressors and can give insight on how to treat and cure different cancers in the future. Other examples of tumor suppressors include pVHL, APC, CD95, ST5, YPEL3, ST7, and ST14, p16, BRCA2.
"Oncogenes and tumor suppressor genes | American Cancer Society". www.cancer.org. Archived from the original on 2021-03-18. Retrieved 2019-09-26. https://web.archive.org/web/20210318042535/https://www.cancer.org/cancer/cancer-causes/genetics/genes-and-cancer/oncogenes-tumor-suppressor-genes.html
Weinberg, Robert A (2014). "The Biology of Cancer." Garland Science, page 231.
"Glossary of Cancer Genetics (side-frame)". www.cancerindex.org. Retrieved 2019-11-19. http://www.cancerindex.org/geneweb/glossdef.htm
"Glossary of Cancer Genetics (side-frame)". www.cancerindex.org. Retrieved 2019-11-19. http://www.cancerindex.org/geneweb/glossdef.htm
"Cancer Genetics - CuboCube". www.cubocube.com. Archived from the original on 2020-10-12. Retrieved 2019-11-19. https://web.archive.org/web/20201012025310/http://www.cubocube.com/dashboard.php?a=347&b=428&c=1
Sherr, Charles J. (2004). "Principles of Tumor Suppression". Cell. 116 (2): 235–246. doi:10.1016/S0092-8674(03)01075-4. PMID 14744434. S2CID 18712326. https://doi.org/10.1016%2FS0092-8674%2803%2901075-4
Cooper, G. M. (2000). Tumor Suppressor Genes. The Cell: A Molecular Approach. 2nd Edition. https://www.ncbi.nlm.nih.gov/books/NBK9894/ https://www.ncbi.nlm.nih.gov/books/NBK9894/
Cooper, G. M. (2000). Tumor Suppressor Genes. The Cell: A Molecular Approach. 2nd Edition. https://www.ncbi.nlm.nih.gov/books/NBK9894/ https://www.ncbi.nlm.nih.gov/books/NBK9894/
Cooper, G. M. (2000). Tumor Suppressor Genes. The Cell: A Molecular Approach. 2nd Edition. https://www.ncbi.nlm.nih.gov/books/NBK9894/ https://www.ncbi.nlm.nih.gov/books/NBK9894/
Sherr, Charles J. (2004). "Principles of Tumor Suppression". Cell. 116 (2): 235–246. doi:10.1016/S0092-8674(03)01075-4. PMID 14744434. S2CID 18712326. https://doi.org/10.1016%2FS0092-8674%2803%2901075-4
Cooper, G. M. (2000). Tumor Suppressor Genes. The Cell: A Molecular Approach. 2nd Edition. https://www.ncbi.nlm.nih.gov/books/NBK9894/ https://www.ncbi.nlm.nih.gov/books/NBK9894/
Sherr, Charles J. (2004). "Principles of Tumor Suppression". Cell. 116 (2): 235–246. doi:10.1016/S0092-8674(03)01075-4. PMID 14744434. S2CID 18712326. https://doi.org/10.1016%2FS0092-8674%2803%2901075-4
Sherr, Charles J. (2004). "Principles of Tumor Suppression". Cell. 116 (2): 235–246. doi:10.1016/S0092-8674(03)01075-4. PMID 14744434. S2CID 18712326. https://doi.org/10.1016%2FS0092-8674%2803%2901075-4
Cooper, G. M. (2000). Tumor Suppressor Genes. The Cell: A Molecular Approach. 2nd Edition. https://www.ncbi.nlm.nih.gov/books/NBK9894/ https://www.ncbi.nlm.nih.gov/books/NBK9894/
Knudson AG (April 1971). "Mutation and cancer: statistical study of retinoblastoma". Proceedings of the National Academy of Sciences of the United States of America. 68 (4): 820–823. Bibcode:1971PNAS...68..820K. doi:10.1073/pnas.68.4.820. PMC 389051. PMID 5279523. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC389051
Knudson AG (April 1971). "Mutation and cancer: statistical study of retinoblastoma". Proceedings of the National Academy of Sciences of the United States of America. 68 (4): 820–823. Bibcode:1971PNAS...68..820K. doi:10.1073/pnas.68.4.820. PMC 389051. PMID 5279523. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC389051
"Tumor Suppressor (TS) Genes and the Two-Hit Hypothesis | Learn Science at Scitable". www.nature.com. Retrieved 2019-10-06. https://www.nature.com/scitable/topicpage/tumor-suppressor-ts-genes-and-the-two-887/
"Tumor Suppressor (TS) Genes and the Two-Hit Hypothesis | Learn Science at Scitable". www.nature.com. Retrieved 2019-10-06. https://www.nature.com/scitable/topicpage/tumor-suppressor-ts-genes-and-the-two-887/
"Tumor Suppressor (TS) Genes and the Two-Hit Hypothesis | Learn Science at Scitable". www.nature.com. Retrieved 2019-10-06. https://www.nature.com/scitable/topicpage/tumor-suppressor-ts-genes-and-the-two-887/
"Tumor Suppressor (TS) Genes and the Two-Hit Hypothesis | Learn Science at Scitable". www.nature.com. Retrieved 2019-10-06. https://www.nature.com/scitable/topicpage/tumor-suppressor-ts-genes-and-the-two-887/
Baker SJ, Markowitz S, Fearon ER, Willson JK, Vogelstein B (August 1990). "Suppression of human colorectal carcinoma cell growth by wild-type p53". Science. 249 (4971): 912–915. Bibcode:1990Sci...249..912B. doi:10.1126/science.2144057. PMID 2144057. /wiki/Bibcode_(identifier)
Fero ML, Randel E, Gurley KE, Roberts JM, Kemp CJ (November 1998). "The murine gene p27Kip1 is haplo-insufficient for tumour suppression". Nature. 396 (6707): 177–180. Bibcode:1998Natur.396..177F. doi:10.1038/24179. PMC 5395202. PMID 9823898. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5395202
Cooper GM (2000). "Tumor Suppressor Genes". The Cell: A Molecular Approach (2nd ed.). Sunderland (MA): Sinauer Associates. https://www.ncbi.nlm.nih.gov/books/NBK9894/
Wang LH, Wu CF, Rajasekaran N, Shin YK (2018). "Loss of Tumor Suppressor Gene Function in Human Cancer: An Overview". Cellular Physiology and Biochemistry. 51 (6): 2647–2693. doi:10.1159/000495956. PMID 30562755. https://doi.org/10.1159%2F000495956
Leiderman YI, Kiss S, Mukai S (2007). "Molecular genetics of RB1--the retinoblastoma gene". Seminars in Ophthalmology. 22 (4): 247–254. doi:10.1080/08820530701745165. PMID 18097988. S2CID 42925807. /wiki/Doi_(identifier)
Smith AL, Robin TP, Ford HL (September 2012). "Molecular pathways: targeting the TGF-β pathway for cancer therapy". Clinical Cancer Research. 18 (17): 4514–4521. doi:10.1158/1078-0432.CCR-11-3224. PMID 22711703. https://doi.org/10.1158%2F1078-0432.CCR-11-3224
Savage KI, Harkin DP (February 2015). "BRCA1, a 'complex' protein involved in the maintenance of genomic stability". The FEBS Journal. 282 (4): 630–646. doi:10.1111/febs.13150. PMID 25400280. https://doi.org/10.1111%2Ffebs.13150
Nayak SK, Panesar PS, Kumar H (2009). "p53-Induced apoptosis and inhibitors of p53". Current Medicinal Chemistry. 16 (21): 2627–2640. doi:10.2174/092986709788681976. PMID 19601800. /wiki/Doi_(identifier)
Yoshida BA, Sokoloff MM, Welch DR, Rinker-Schaeffer CW (November 2000). "Metastasis-suppressor genes: a review and perspective on an emerging field". Journal of the National Cancer Institute. 92 (21): 1717–1730. doi:10.1093/jnci/92.21.1717. PMID 11058615. https://doi.org/10.1093%2Fjnci%2F92.21.1717
Hirohashi S, Kanai Y (July 2003). "Cell adhesion system and human cancer morphogenesis". Cancer Science. 94 (7): 575–581. doi:10.1111/j.1349-7006.2003.tb01485.x. PMC 11160151. PMID 12841864. S2CID 22154824. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11160151
Markowitz S (November 2000). "DNA repair defects inactivate tumor suppressor genes and induce hereditary and sporadic colon cancers". Journal of Clinical Oncology. 18 (21 Suppl): 75S – 80S. PMID 11060332. /wiki/PMID_(identifier)
Rahman N, Scott RH (April 2007). "Cancer genes associated with phenotypes in monoallelic and biallelic mutation carriers: new lessons from old players". Human Molecular Genetics. 16 Spec No 1 (R1): R60 – R66. doi:10.1093/hmg/ddm026. PMID 17613548. /wiki/Doi_(identifier)
Shen L, Shi Q, Wang W (March 2018). "Double agents: genes with both oncogenic and tumor-suppressor functions". Oncogenesis. 7 (3): 25. doi:10.1038/s41389-018-0034-x. PMC 5852963. PMID 29540752. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5852963
Wajed SA, Laird PW, DeMeester TR (July 2001). "DNA methylation: an alternative pathway to cancer". Annals of Surgery. 234 (1): 10–20. doi:10.1097/00000658-200107000-00003. PMC 1421942. PMID 11420478. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1421942
Baylin SB (December 2005). "DNA methylation and gene silencing in cancer". Nature Clinical Practice. Oncology. 2 (Suppl 1): S4-11. doi:10.1038/ncponc0354. PMID 16341240. S2CID 19361179. /wiki/Doi_(identifier)
Delbridge AR, Valente LJ, Strasser A (November 2012). "The role of the apoptotic machinery in tumor suppression". Cold Spring Harbor Perspectives in Biology. 4 (11): a008789. doi:10.1101/cshperspect.a008789. PMC 3536334. PMID 23125015. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3536334
"Tumor Suppressor (TS) Genes and the Two-Hit Hypothesis | Learn Science at Scitable". www.nature.com. Retrieved 2020-10-27. https://www.nature.com/scitable/topicpage/tumor-suppressor-ts-genes-and-the-two-887/
"Tumor Suppressor (TS) Genes and the Two-Hit Hypothesis | Learn Science at Scitable". www.nature.com. Retrieved 2020-10-27. https://www.nature.com/scitable/topicpage/tumor-suppressor-ts-genes-and-the-two-887/
"Tumor Suppressor (TS) Genes and the Two-Hit Hypothesis | Learn Science at Scitable". www.nature.com. Retrieved 2020-10-27. https://www.nature.com/scitable/topicpage/tumor-suppressor-ts-genes-and-the-two-887/
Nayerossadat N, Maedeh T, Ali PA (2012-07-06). "Viral and nonviral delivery systems for gene delivery". Advanced Biomedical Research. 1: 27. doi:10.4103/2277-9175.98152. PMC 3507026. PMID 23210086. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3507026
"Tumor Suppressor (TS) Genes and the Two-Hit Hypothesis | Learn Science at Scitable". www.nature.com. Retrieved 2020-10-27. https://www.nature.com/scitable/topicpage/tumor-suppressor-ts-genes-and-the-two-887/
Guo XE, Ngo B, Modrek AS, Lee WH (January 2014). "Targeting tumor suppressor networks for cancer therapeutics". Current Drug Targets. 15 (1): 2–16. doi:10.2174/1389450114666140106095151. PMC 4032821. PMID 24387338. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4032821
Nayerossadat N, Maedeh T, Ali PA (2012-07-06). "Viral and nonviral delivery systems for gene delivery". Advanced Biomedical Research. 1: 27. doi:10.4103/2277-9175.98152. PMC 3507026. PMID 23210086. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3507026
Guo XE, Ngo B, Modrek AS, Lee WH (January 2014). "Targeting tumor suppressor networks for cancer therapeutics". Current Drug Targets. 15 (1): 2–16. doi:10.2174/1389450114666140106095151. PMC 4032821. PMID 24387338. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4032821
Morris LG, Chan TA (May 2015). "Therapeutic targeting of tumor suppressor genes". Cancer. 121 (9): 1357–1368. doi:10.1002/cncr.29140. PMC 4526158. PMID 25557041. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4526158
"Tumor Suppressor (TS) Genes and the Two-Hit Hypothesis | Learn Science at Scitable". www.nature.com. Retrieved 2020-10-27. https://www.nature.com/scitable/topicpage/tumor-suppressor-ts-genes-and-the-two-887/
Guo XE, Ngo B, Modrek AS, Lee WH (January 2014). "Targeting tumor suppressor networks for cancer therapeutics". Current Drug Targets. 15 (1): 2–16. doi:10.2174/1389450114666140106095151. PMC 4032821. PMID 24387338. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4032821
"Tumor Suppressor (TS) Genes and the Two-Hit Hypothesis | Learn Science at Scitable". www.nature.com. Retrieved 2020-10-27. https://www.nature.com/scitable/topicpage/tumor-suppressor-ts-genes-and-the-two-887/
"Tumor Suppressor (TS) Genes and the Two-Hit Hypothesis | Learn Science at Scitable". www.nature.com. Retrieved 2020-10-27. https://www.nature.com/scitable/topicpage/tumor-suppressor-ts-genes-and-the-two-887/
Guo XE, Ngo B, Modrek AS, Lee WH (January 2014). "Targeting tumor suppressor networks for cancer therapeutics". Current Drug Targets. 15 (1): 2–16. doi:10.2174/1389450114666140106095151. PMC 4032821. PMID 24387338. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4032821
Guo XE, Ngo B, Modrek AS, Lee WH (January 2014). "Targeting tumor suppressor networks for cancer therapeutics". Current Drug Targets. 15 (1): 2–16. doi:10.2174/1389450114666140106095151. PMC 4032821. PMID 24387338. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4032821
"Tumor Suppressor (TS) Genes and the Two-Hit Hypothesis | Learn Science at Scitable". www.nature.com. Retrieved 2020-10-27. https://www.nature.com/scitable/topicpage/tumor-suppressor-ts-genes-and-the-two-887/
"Tumor Suppressor (TS) Genes and the Two-Hit Hypothesis | Learn Science at Scitable". www.nature.com. Retrieved 2020-10-27. https://www.nature.com/scitable/topicpage/tumor-suppressor-ts-genes-and-the-two-887/
Guo XE, Ngo B, Modrek AS, Lee WH (January 2014). "Targeting tumor suppressor networks for cancer therapeutics". Current Drug Targets. 15 (1): 2–16. doi:10.2174/1389450114666140106095151. PMC 4032821. PMID 24387338. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4032821
Guo XE, Ngo B, Modrek AS, Lee WH (January 2014). "Targeting tumor suppressor networks for cancer therapeutics". Current Drug Targets. 15 (1): 2–16. doi:10.2174/1389450114666140106095151. PMC 4032821. PMID 24387338. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4032821
"Tumor Suppressor (TS) Genes and the Two-Hit Hypothesis | Learn Science at Scitable". www.nature.com. Retrieved 2020-10-27. https://www.nature.com/scitable/topicpage/tumor-suppressor-ts-genes-and-the-two-887/
Guo XE, Ngo B, Modrek AS, Lee WH (January 2014). "Targeting tumor suppressor networks for cancer therapeutics". Current Drug Targets. 15 (1): 2–16. doi:10.2174/1389450114666140106095151. PMC 4032821. PMID 24387338. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4032821
Morris LG, Chan TA (May 2015). "Therapeutic targeting of tumor suppressor genes". Cancer. 121 (9): 1357–1368. doi:10.1002/cncr.29140. PMC 4526158. PMID 25557041. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4526158
Sherr, Charles J. (2004). "Principles of Tumor Suppression". Cell. 116 (2): 235–246. doi:10.1016/S0092-8674(03)01075-4. PMID 14744434. S2CID 18712326. https://doi.org/10.1016%2FS0092-8674%2803%2901075-4
Sherr, Charles J. (2004). "Principles of Tumor Suppression". Cell. 116 (2): 235–246. doi:10.1016/S0092-8674(03)01075-4. PMID 14744434. S2CID 18712326. https://doi.org/10.1016%2FS0092-8674%2803%2901075-4
"Tumor Suppressor (TS) Genes and the Two-Hit Hypothesis | Learn Science at Scitable". www.nature.com. Retrieved 2020-10-27. https://www.nature.com/scitable/topicpage/tumor-suppressor-ts-genes-and-the-two-887/
"Tumor Suppressor (TS) Genes and the Two-Hit Hypothesis | Learn Science at Scitable". www.nature.com. Retrieved 2020-10-27. https://www.nature.com/scitable/topicpage/tumor-suppressor-ts-genes-and-the-two-887/
Sherr, Charles J. (2004). "Principles of Tumor Suppression". Cell. 116 (2): 235–246. doi:10.1016/S0092-8674(03)01075-4. PMID 14744434. S2CID 18712326. https://doi.org/10.1016%2FS0092-8674%2803%2901075-4
"Tumor Suppressor (TS) Genes and the Two-Hit Hypothesis | Learn Science at Scitable". www.nature.com. Retrieved 2020-10-27. https://www.nature.com/scitable/topicpage/tumor-suppressor-ts-genes-and-the-two-887/
Sherr, Charles J. (2004). "Principles of Tumor Suppression". Cell. 116 (2): 235–246. doi:10.1016/S0092-8674(03)01075-4. PMID 14744434. S2CID 18712326. https://doi.org/10.1016%2FS0092-8674%2803%2901075-4
"Tumor Suppressor (TS) Genes and the Two-Hit Hypothesis | Learn Science at Scitable". www.nature.com. Retrieved 2020-10-27. https://www.nature.com/scitable/topicpage/tumor-suppressor-ts-genes-and-the-two-887/
"Tumor Suppressor (TS) Genes and the Two-Hit Hypothesis | Learn Science at Scitable". www.nature.com. Retrieved 2019-10-06. https://www.nature.com/scitable/topicpage/tumor-suppressor-ts-genes-and-the-two-887/
"RETINOBLASTOMA: Protein". dpuadweb.depauw.edu. Retrieved 2019-11-21. http://dpuadweb.depauw.edu/cfornari_web/DISGEN/retinoblastoma_website/public_html/protein.htm
Harris CC (October 1996). "Structure and function of the p53 tumor suppressor gene: clues for rational cancer therapeutic strategies". Journal of the National Cancer Institute. 88 (20): 1442–1455. doi:10.1093/jnci/88.20.1442. PMID 8841019. https://doi.org/10.1093%2Fjnci%2F88.20.1442
Harris CC (October 1996). "Structure and function of the p53 tumor suppressor gene: clues for rational cancer therapeutic strategies". Journal of the National Cancer Institute. 88 (20): 1442–1455. doi:10.1093/jnci/88.20.1442. PMID 8841019. https://doi.org/10.1093%2Fjnci%2F88.20.1442
"BCL2 (B-Cell Leukemia/Lymphoma 2)". atlasgeneticsoncology.org. Archived from the original on 2021-06-14. Retrieved 2019-11-21. https://web.archive.org/web/20210614064435/https://www.atlasgeneticsoncology.org/Genes/GC_BCL2.html
"BCL2 (B-Cell Leukemia/Lymphoma 2)". atlasgeneticsoncology.org. Archived from the original on 2021-06-14. Retrieved 2019-11-21. https://web.archive.org/web/20210614064435/https://www.atlasgeneticsoncology.org/Genes/GC_BCL2.html
Goodsell DS (2004-04-01). "The molecular perspective: cytochrome C and apoptosis". The Oncologist. 9 (2): 226–227. doi:10.1634/theoncologist.9-2-226. PMID 15047927. /wiki/Doi_(identifier)
Shain AH, Pollack JR (2013). "The spectrum of SWI/SNF mutations, ubiquitous in human cancers". PLOS ONE. 8 (1): e55119. Bibcode:2013PLoSO...855119S. doi:10.1371/journal.pone.0055119. PMC 3552954. PMID 23355908. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3552954
Shain AH, Pollack JR (2013). "The spectrum of SWI/SNF mutations, ubiquitous in human cancers". PLOS ONE. 8 (1): e55119. Bibcode:2013PLoSO...855119S. doi:10.1371/journal.pone.0055119. PMC 3552954. PMID 23355908. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3552954
Shain AH, Pollack JR (2013). "The spectrum of SWI/SNF mutations, ubiquitous in human cancers". PLOS ONE. 8 (1): e55119. Bibcode:2013PLoSO...855119S. doi:10.1371/journal.pone.0055119. PMC 3552954. PMID 23355908. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3552954
"TUMOUR SUPPRESSOR GENES IN CANCER". www.letstalkacademy.com. Retrieved 2019-11-21. https://www.letstalkacademy.com/publication/read/tumour-suppressor-genes-in-cancer