Let N {\displaystyle \mathbb {N} } be the set of non-negative integers, and for any n ∈ N {\displaystyle n\in \mathbb {N} } , let N n := N × ⋯ × N ⏟ n times {\displaystyle \mathbb {N} ^{n}:=\underbrace {\mathbb {N} \times \dots \times \mathbb {N} } _{n{\text{ times}}}} be the n-fold Cartesian product.
The Schwartz space or space of rapidly decreasing functions on R n {\displaystyle \mathbb {R} ^{n}} is the function space S ( R n , C ) := { f ∈ C ∞ ( R n , C ) ∣ ∀ α , β ∈ N n , ‖ f ‖ α , β < ∞ } , {\displaystyle {\mathcal {S}}\left(\mathbb {R} ^{n},\mathbb {C} \right):=\left\{f\in C^{\infty }(\mathbb {R} ^{n},\mathbb {C} )\mid \forall {\boldsymbol {\alpha }},{\boldsymbol {\beta }}\in \mathbb {N} ^{n},\|f\|_{{\boldsymbol {\alpha }},{\boldsymbol {\beta }}}<\infty \right\},} where C ∞ ( R n , C ) {\displaystyle C^{\infty }(\mathbb {R} ^{n},\mathbb {C} )} is the function space of smooth functions from R n {\displaystyle \mathbb {R} ^{n}} into C {\displaystyle \mathbb {C} } , and ‖ f ‖ α , β := sup x ∈ R n | x α ( D β f ) ( x ) | . {\displaystyle \|f\|_{{\boldsymbol {\alpha }},{\boldsymbol {\beta }}}:=\sup _{{\boldsymbol {x}}\in \mathbb {R} ^{n}}\left|{\boldsymbol {x}}^{\boldsymbol {\alpha }}({\boldsymbol {D}}^{\boldsymbol {\beta }}f)({\boldsymbol {x}})\right|.} Here, sup {\displaystyle \sup } denotes the supremum, and we used multi-index notation, i.e. x α := x 1 α 1 x 2 α 2 … x n α n {\displaystyle {\boldsymbol {x}}^{\boldsymbol {\alpha }}:=x_{1}^{\alpha _{1}}x_{2}^{\alpha _{2}}\ldots x_{n}^{\alpha _{n}}} and D β := ∂ 1 β 1 ∂ 2 β 2 … ∂ n β n {\displaystyle D^{\boldsymbol {\beta }}:=\partial _{1}^{\beta _{1}}\partial _{2}^{\beta _{2}}\ldots \partial _{n}^{\beta _{n}}} .
To put common language to this definition, one could consider a rapidly decreasing function as essentially a function f(x) such that f(x), f ′(x), f ′′(x), ... all exist everywhere on R and go to zero as x→ ±∞ faster than any reciprocal power of x. In particular, 𝒮(Rn, C) is a subspace of the function space C∞(Rn, C) of smooth functions from Rn into C.
In particular, this implies that 𝒮(Rn) is an R-algebra. More generally, if f ∈ 𝒮(R) and H is a bounded smooth function with bounded derivatives of all orders, then fH ∈ 𝒮(R).
This article incorporates material from Space of rapidly decreasing functions on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.