Multilinear methods may be causal in nature and perform causal inference, or they may be simple regression methods from which no causal conclusion are drawn.
Multilinear subspace learning can be applied to observations whose measurements were vectorized and organized into a data tensor for causally aware dimensionality reduction. These methods may also be employed in reducing horizontal and vertical redundancies irrespective of the causal factors when the observations are treated as a "matrix" (ie. a collection of independent column/row observations) and concatenated into a tensor.
This is originated from the alternating least square method for multi-way data analysis.
M. A. O. Vasilescu, D. Terzopoulos (2003) "Multilinear Subspace Analysis of Image Ensembles", "Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’03), Madison, WI, June, 2003" http://www.cs.toronto.edu/~maov/tensorfaces/cvpr03.pdf
M. A. O. Vasilescu, D. Terzopoulos (2002) "Multilinear Analysis of Image Ensembles: TensorFaces", Proc. 7th European Conference on Computer Vision (ECCV'02), Copenhagen, Denmark, May, 2002 http://www.cs.toronto.edu/~maov/tensorfaces/Springer%20ECCV%202002_files/eccv02proceeding_23500447.pdf
M. A. O. Vasilescu,(2002) "Human Motion Signatures: Analysis, Synthesis, Recognition", "Proceedings of International Conference on Pattern Recognition (ICPR 2002), Vol. 3, Quebec City, Canada, Aug, 2002, 456–460." http://www.media.mit.edu/~maov/motionsignatures/hms_icpr02_corrected.pdf
Vasilescu, M.A.O.; Terzopoulos, D. (2007). Multilinear Projection for Appearance-Based Recognition in the Tensor Framework. IEEE 11th International Conference on Computer Vision. pp. 1–8. doi:10.1109/ICCV.2007.4409067..
/wiki/International_Conference_on_Computer_Vision
Lu, Haiping; Plataniotis, K.N.; Venetsanopoulos, A.N. (2013). Multilinear Subspace Learning: Dimensionality Reduction of Multidimensional Data. Chapman & Hall/CRC Press Machine Learning and Pattern Recognition Series. Taylor and Francis. ISBN 978-1-4398572-4-3. 978-1-4398572-4-3
M. A. O. Vasilescu, D. Terzopoulos (2003) "Multilinear Subspace Analysis of Image Ensembles", "Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’03), Madison, WI, June, 2003" http://www.cs.toronto.edu/~maov/tensorfaces/cvpr03.pdf
Lu, Haiping; Plataniotis, K.N.; Venetsanopoulos, A.N. (2011). "A Survey of Multilinear Subspace Learning for Tensor Data" (PDF). Pattern Recognition. 44 (7): 1540–1551. Bibcode:2011PatRe..44.1540L. doi:10.1016/j.patcog.2011.01.004. http://www.dsp.utoronto.ca/~haiping/Publication/SurveyMSL_PR2011.pdf
X. He, D. Cai, P. Niyogi, Tensor subspace analysis, in: Advances in Neural Information Processing Systemsc 18 (NIPS), 2005. http://books.nips.cc/papers/files/nips18/NIPS2005_0249.pdf
Vasilescu, M.A.O.; Terzopoulos, D. (2007). Multilinear Projection for Appearance-Based Recognition in the Tensor Framework. IEEE 11th International Conference on Computer Vision. pp. 1–8. doi:10.1109/ICCV.2007.4409067..
/wiki/International_Conference_on_Computer_Vision
Lu, Haiping; Plataniotis, K.N.; Venetsanopoulos, A.N. (2011). "A Survey of Multilinear Subspace Learning for Tensor Data" (PDF). Pattern Recognition. 44 (7): 1540–1551. Bibcode:2011PatRe..44.1540L. doi:10.1016/j.patcog.2011.01.004. http://www.dsp.utoronto.ca/~haiping/Publication/SurveyMSL_PR2011.pdf
M. A. O. Vasilescu, D. Terzopoulos (2003) "Multilinear Subspace Analysis of Image Ensembles", "Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’03), Madison, WI, June, 2003" http://www.cs.toronto.edu/~maov/tensorfaces/cvpr03.pdf
"Future Directions in Tensor-Based Computation and Modeling" (PDF). May 2009. http://www.cs.cornell.edu/cv/tenwork/finalreport.pdf
S. Yan, D. Xu, Q. Yang, L. Zhang, X. Tang, and H.-J. Zhang, "Discriminant analysis with tensor representation," in Proc. IEEE Conference on Computer Vision and Pattern Recognition, vol. I, June 2005, pp. 526–532. http://portal.acm.org/citation.cfm?id=1068959
P. M. Kroonenberg and J. de Leeuw, Principal component analysis of three-mode data by means of alternating least squares algorithms, Psychometrika, 45 (1980), pp. 69–97. https://doi.org/10.1007%2FBF02293599
M. A. O. Vasilescu, D. Terzopoulos (2005) "Multilinear Independent Component Analysis", "Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, June 2005, vol.1, 547–553." http://www.media.mit.edu/~maov/mica/mica05.pdf
M. A. O. Vasilescu, D. Terzopoulos (2003) "Multilinear Subspace Analysis of Image Ensembles", "Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’03), Madison, WI, June, 2003" http://www.cs.toronto.edu/~maov/tensorfaces/cvpr03.pdf
M. A. O. Vasilescu, D. Terzopoulos (2002) "Multilinear Analysis of Image Ensembles: TensorFaces", Proc. 7th European Conference on Computer Vision (ECCV'02), Copenhagen, Denmark, May, 2002 http://www.cs.toronto.edu/~maov/tensorfaces/Springer%20ECCV%202002_files/eccv02proceeding_23500447.pdf
M. A. O. Vasilescu,(2002) "Human Motion Signatures: Analysis, Synthesis, Recognition", "Proceedings of International Conference on Pattern Recognition (ICPR 2002), Vol. 3, Quebec City, Canada, Aug, 2002, 456–460." http://www.media.mit.edu/~maov/motionsignatures/hms_icpr02_corrected.pdf
M.A.O. Vasilescu, D. Terzopoulos (2004) "TensorTextures: Multilinear Image-Based Rendering", M. A. O. Vasilescu and D. Terzopoulos, Proc. ACM SIGGRAPH 2004 Conference Los Angeles, CA, August, 2004, in Computer Graphics Proceedings, Annual Conference Series, 2004, 336–342.
http://www.media.mit.edu/~maov/tensortextures/Vasilescu_siggraph04.pdf
H. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos, "MPCA: Multilinear principal component analysis of tensor objects," IEEE Trans. Neural Netw., vol. 19, no. 1, pp. 18–39, January 2008. https://dx.doi.org/10.1109/TNN.2007.901277
M. A. O. Vasilescu, D. Terzopoulos (2005) "Multilinear Independent Component Analysis", "Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, June 2005, vol.1, 547–553." http://www.media.mit.edu/~maov/mica/mica05.pdf
M. A. O. Vasilescu, D. Terzopoulos (2005) "Multilinear Independent Component Analysis", "Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, June 2005, vol.1, 547–553." http://www.media.mit.edu/~maov/mica/mica05.pdf
S. Yan, D. Xu, Q. Yang, L. Zhang, X. Tang, and H.-J. Zhang, "Discriminant analysis with tensor representation," in Proc. IEEE Conference on Computer Vision and Pattern Recognition, vol. I, June 2005, pp. 526–532. http://portal.acm.org/citation.cfm?id=1068959
D. Tao, X. Li, X. Wu, and S. J. Maybank, "General tensor discriminant analysis and gabor features for gait recognition," IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 10, pp. 1700–1715, October 2007. https://dx.doi.org/10.1109/TPAMI.2007.1096
H. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos, "Uncorrelated multilinear discriminant analysis with regularization and aggregation for tensor object recognition," IEEE Trans. Neural Netw., vol. 20, no. 1, pp. 103–123, January 2009. https://dx.doi.org/10.1109/TNN.2008.2004625
T.-K. Kim and R. Cipolla. "Canonical correlation analysis of video volume tensors for action categorization and detection," IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 8, pp. 1415–1428, 2009. https://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4547427
H. Lu, "Learning Canonical Correlations of Paired Tensor Sets via Tensor-to-Vector Projection," Proceedings of the 23rd International Joint Conference on Artificial Intelligence (IJCAI 2013), Beijing, China, August 3–9, 2013. http://www.dsp.utoronto.ca/~haiping/Publication/MCCA_IJCAI2013.pdf
Khan, Suleiman A.; Kaski, Samuel (2014-09-15). "Bayesian Multi-view Tensor Factorization". In Calders, Toon; Esposito, Floriana; Hüllermeier, Eyke; Meo, Rosa (eds.). Machine Learning and Knowledge Discovery in Databases. Lecture Notes in Computer Science. Vol. 8724. Springer Berlin Heidelberg. pp. 656–671. doi:10.1007/978-3-662-44848-9_42. ISBN 9783662448472. 9783662448472
L.D. Lathauwer, B.D. Moor, J. Vandewalle, A multilinear singular value decomposition, SIAM Journal of Matrix Analysis and Applications vol. 21, no. 4, pp. 1253–1278, 2000 http://portal.acm.org/citation.cfm?id=354398
L.D. Lathauwer, B.D. Moor, J. Vandewalle, A multilinear singular value decomposition, SIAM Journal of Matrix Analysis and Applications vol. 21, no. 4, pp. 1253–1278, 2000 http://portal.acm.org/citation.cfm?id=354398
H. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos, "MPCA: Multilinear principal component analysis of tensor objects," IEEE Trans. Neural Netw., vol. 19, no. 1, pp. 18–39, January 2008. https://dx.doi.org/10.1109/TNN.2007.901277
Ledyard R Tucker (September 1966). "Some mathematical notes on three-mode factor analysis". Psychometrika. 31 (3): 279–311. doi:10.1007/BF02289464. PMID 5221127. S2CID 44301099. /wiki/Ledyard_R_Tucker
J. D. Carroll & J. Chang (1970). "Analysis of individual differences in multidimensional scaling via an n-way generalization of 'Eckart–Young' decomposition". Psychometrika. 35 (3): 283–319. doi:10.1007/BF02310791. S2CID 50364581. /wiki/Psychometrika
R. A. Harshman, Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-modal factor analysis Archived 2004-10-10 at the Wayback Machine. UCLA Working Papers in Phonetics, 16, pp. 1–84, 1970. http://publish.uwo.ca/~harshman/wpppfac0.pdf
L. D. Lathauwer, B. D. Moor, J. Vandewalle, On the best rank-1 and rank-(R1, R2, ..., RN ) approximation of higher-order tensors, SIAM Journal of Matrix Analysis and Applications 21 (4) (2000) 1324–1342. http://portal.acm.org/citation.cfm?id=354405
P. M. Kroonenberg and J. de Leeuw, Principal component analysis of three-mode data by means of alternating least squares algorithms, Psychometrika, 45 (1980), pp. 69–97. https://doi.org/10.1007%2FBF02293599