The complexity class EH is the union of the classes Σ k E {\displaystyle \Sigma _{k}^{\mathsf {E}}} for all k, where Σ k E = N E Σ k − 1 P {\displaystyle \Sigma _{k}^{\mathsf {E}}={\mathsf {NE}}^{\Sigma _{k-1}^{\mathsf {P}}}} (i.e., languages computable in nondeterministic time 2 c n {\displaystyle 2^{cn}} for some constant c with a Σ k − 1 P {\displaystyle \Sigma _{k-1}^{\mathsf {P}}} oracle) and Σ 0 E = E {\displaystyle \Sigma _{0}^{\mathsf {E}}={\mathsf {E}}} . One also defines
An equivalent definition is that a language L is in Σ k E {\displaystyle \Sigma _{k}^{\mathsf {E}}} if and only if it can be written in the form
where R ( x , y 1 , … , y n ) {\displaystyle R(x,y_{1},\ldots ,y_{n})} is a predicate computable in time 2 c | x | {\displaystyle 2^{c|x|}} (which implicitly bounds the length of yi). Also equivalently, EH is the class of languages computable on an alternating Turing machine in time 2 c n {\displaystyle 2^{cn}} for some c with constantly many alternations.
EXPH is the union of the classes Σ k E X P {\displaystyle \Sigma _{k}^{\mathsf {EXP}}} , where Σ k E X P = N E X P Σ k − 1 P {\displaystyle \Sigma _{k}^{\mathsf {EXP}}={\mathsf {NEXP}}^{\Sigma _{k-1}^{\mathsf {P}}}} (languages computable in nondeterministic time 2 n c {\displaystyle 2^{n^{c}}} for some constant c with a Σ k − 1 P {\displaystyle \Sigma _{k-1}^{\mathsf {P}}} oracle), Σ 0 E X P = E X P {\displaystyle \Sigma _{0}^{\mathsf {EXP}}={\mathsf {EXP}}} , and again:
A language L is in Σ k E X P {\displaystyle \Sigma _{k}^{\mathsf {EXP}}} if and only if it can be written as
where R ( x , y 1 , … , y k ) {\displaystyle R(x,y_{1},\ldots ,y_{k})} is computable in time 2 | x | c {\displaystyle 2^{|x|^{c}}} for some c, which again implicitly bounds the length of yi. Equivalently, EXPH is the class of languages computable in time 2 n c {\displaystyle 2^{n^{c}}} on an alternating Turing machine with constantly many alternations.
Complexity Zoo: Class EH
Sarah Mocas, Separating classes in the exponential-time hierarchy from classes in PH, Theoretical Computer Science 158 (1996), no. 1–2, pp. 221–231. /wiki/Theoretical_Computer_Science_(journal) ↩
Anuj Dawar, Georg Gottlob, Lauri Hella, Capturing relativized complexity classes without order, Mathematical Logic Quarterly 44 (1998), no. 1, pp. 109–122. ↩
Hemachandra, Lane A. (1989). "The strong exponential hierarchy collapses". Journal of Computer and System Sciences. 39 (3): 299–322. doi:10.1016/0022-0000(89)90025-1. /wiki/Journal_of_Computer_and_System_Sciences ↩